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Abstract  
The accurate estimation of population living in the Low Elevation Coastal Zone (LECZ), and at heightened risk from 

sea level rise, is critically important for policy makers and risk managers worldwide. This characterization of potential 

exposure depends not only on robust representations of coastal elevation and spatial population data, but also of 

settlements along the urban-rural continuum. The empirical basis for LECZ estimation has improved considerably in 20 

the 13 years since it was first estimated that 10% of the world’s population, and an even greater share of the urban 

population, lived in the LECZ (McGranahan et al., 2007b). Those estimates were constrained in several ways, most 

notably by a single 10-meter LECZ, but also by a dichotomous urban-rural proxy and population from a single source. 

This paper updates those initial estimates with newer, improved inputs and provides a range of estimates, along with 

sensitivity analyses that reveal the importance of understanding the strengths and weaknesses of the underlying data. 25 

We estimate that between 750 million to nearly 1.1 billion persons globally, in 2015, live in the ≤10m LECZ, with the 

variation depending on the elevation and population data sources used. The variations are considerably greater at more 

disaggregated levels, when finer elevation bands (e.g. the ≤5m LECZ) or differing delineations between urban, quasi-

urban and rural populations are considered. Despite these variations, there is general agreement that the LECZ is 

disproportionately home to urban dwellers, and that the urban population in the LECZ has grown more than urban 30 

areas outside the LECZ since 1990. We describe the main results across these new elevation, population, and urban 

proxy data sources in order to guide future research and improvements to characterizing risk in low elevation coastal 

zones. DOI: assigned upon completion of data peer-review.  
 

1. INTRODUCTION 35 

Climate change threatens people around the world, but particularly in locations where concentrations of people can 

be expected to overlap with concentrations of physical hazards resulting from climate change. Low elevation coastal 

zones (LECZs) are likely to contain a disproportionate and growing share of such locations. Sea level rise and a greater 

prevalence of extreme weather events are correlates of climate change and heighten the risks of flooding, coastal 

erosion, groundwater salinization and other hazards in low lying coastal areas (Oppenheimer and Hinkel, 2019). 40 

People are also more concentrated in coastal areas, and continued urbanization can be expected to increase this 

concentration, unless urban development patterns change substantially. Flooding and other hazards related to sea level 

rise and extreme weather events not only threaten human life and wellbeing directly, but also indirectly through 

damage to homes, businesses and infrastructure, as well as to ecosystems and the services they provide. A foundational 

study of settlement in the LECZ globally (McGranahan et al., 2007b) found that in the year 2000, coastally contiguous 45 

areas of less than ten meters in elevation contained an estimated 10 percent of the world’s population and 13 percent 

of its urban population. That  study also contained case studies of China and Bangladesh, suggesting that from 1990-

2000, populations in these countries’ LECZs were growing faster than outside the LECZ, with urban LECZ 

populations growing fastest of all. Since that study, a number of new tools and data sets have been developed, allowing 

for more refined estimates of land areas, built-up areas, and populations in LECZs, and their changing urban-rural 50 

compositions over a number of years (1990 - 2015).  
 

Accurate estimates of populations living in the LECZ depend on robust representations of coastal elevations (Gesch, 

2018; Hinkel et al., 2014; Lichter et al., 2010) and population at a fine resolution (Mondal and Tatem, 2012; Leyk et 

al., 2019). Estimates of urban population and land in the LECZ require additional data on the spatial extent and density 55 

of urban areas, ideally encompassing a full urban-rural continuum of settlements (Dijkstra et al., 2020; OECD and 

European Commission, 2020). While the empirical basis for such estimates has improved considerably (cf. excellent 

review in McMichael et al., 2020) since the first analysis (McGranahan et al., 2007b), there has also been a 

proliferation of new internationally available data sources containing a wide range of estimates of the population in 

LECZs. For example, a recent study finds that, “New elevation data triple estimates of global vulnerability to sea-60 

level rise and coastal flooding” (Kulp and Strauss, 2019). To improve decision-making there needs to be a better 

understanding of the strengths and limitations of each data set, the applications it is best suited for, and why estimates 

vary so widely. This study fills that gap by constructing new estimates of population and land area found along the 

urban-rural continuum within the LECZ, based on four elevation data sources, four population data sources, and four 

urban proxy data sources, each with their own strengths and weaknesses, all designed to be internationally comparable 65 

and substantially improved in the past decade (Leyk et al., 2019; Gesch, 2018).  
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Improvements in the spatial resolution of these data sets also allows for a more fine-grained analysis of potential 

exposure: within the ≤10m LECZ and along an urban-rural continuum. Using four elevation sources, we first 

constructed the LECZs: ≤5m above sea level, 5-10m above sea level (which can be added together to form a ≤10m 70 

LECZ), and a category of higher coastal areas and non-coastal areas of any elevation. We then estimated the population 

of these LECZs, disaggregated by settlement type, based on an array of population sources and urban proxy data sets. 

The four elevation data sets obtain their estimates through a variety of different sensors, which in one case 

(CoastalDEM) is combined with statistical modeling. The four population data sets use different approaches to 

mapping and disaggregating population, and the four data sets representing the urban-rural continuum use a variety 75 

of different underlying data sources, such as satellite imagery of built-up areas or night-time lights, and different 

modelling approaches (some with population criteria, others without), to categorize the level of urbanization of 

settlements. Defining an urban-rural continuum, largely in contrast to defining population, requires researchers to 

make decisions that reflect the best available knowledge and expert judgements, but are at some level necessarily 

arbitrary, or may be more suitable for some research questions than others.  80 

 

The primary focus of this paper is on methodology and includes a sensitivity analysis in order to compare the many 

sources of population, urban area delineation, and digital elevation models used to construct the LECZs and estimate 

at-risk populations. The sensitivity analysis reveals similarities and differences in each of the data sources that we 

considered for population, urban proxy, and elevation as well as indicates how the results would change if the measures 85 

along an urban-rural continuum were defined with a different indicator (such as night-time lights rather than built-up 

area), or if the thresholds or boundaries of the definitions were adjusted.   
 

We begin in the section on Data and Methods with summaries of input sources and continue with a detailed description 

of how the LECZs were constructed, and how populations and land areas were tabulated. This is followed by a Results 90 

section which includes a series of zonal summaries of gridded population data categorized by LECZ and along an 

urban-rural continuum for three time points (1990, 2000, 2015) and the Sensitivity Analysis. Finally, there is a 

discussion of fitness for use along with conclusions and future research needs. Accompanying this paper are tabular 

data on country-level summaries as well as spatial data, where redistribution is permissible and a python notebook 

which provides an algorithm to produce LECZs from elevation and coastline data (Center for International Earth 95 

Science Information Network - CIESIN - Columbia University, and CUNY Institute for Demographic Research - 

CIDR - City University of New York, 2021).  

2. DATA AND METHODS 

The basic method used here to quantify potential exposure to sea level rise is based on fairly straightforward spatial 

summaries (zonal statistics), but depends on substantial improvements to and suitable conditioning of underlying data 100 

sets, which we describe in detail below. There have been many advances in earth observation, population censuses, 

and scientific computing capacity since the original LECZ Urban-Rural Population Estimates, v1 (1990, 1995, 2000) 

data set (McGranahan et al., 2007a) was constructed. In this section, we provide an overview of the various input data 

sets, including a discussion of the uncertainties. Such uncertainties may have considerable impacts on the ultimate 

estimates of persons, particularly when stratified along an urban-rural continuum, in the LECZ, and must therefore be 105 

carefully understood (Gesch, 2018; Hawker et al., 2019; Mondal and Tatem, 2012; Lichter et al., 2010; Leyk et al., 

2019). Since it has been shown that accuracy of the digital elevation models (DEMs) – upon which the LECZs are 

based – is highly sensitive to local conditions, including land cover, it is therefore sensible to evaluate a variety of 

DEMs that can be used to estimate population and land area in the LECZ. In this section, we describe the data strengths 

and limitations, along with the conditioning, transformations, and processing required to generate LECZs and 110 

accompanying population and land area estimates along an urban-rural continuum. At the end of each type of data, 

we choose a ‘core data set’ to form the basis of comparison with all others and to simplify the presentation of results. 

(Estimates available on all combinations of the data sets are available in the dataset.) Rationales for our selection of 

these core data sets are given.  

2.1 Data on Elevation 115 

For elevation data to construct the LECZ, we considered the sources as described in Table 1 and shown in Fig. 1. 

These data are all freely available at 3 arc second horizontal resolution or higher, but some have restrictions on usage 

and redistribution of derived data products. There is general agreement that the newer data products have made 

substantial improvements in vertical accuracy since the early releases of the Shuttle Radar Topography Mission 
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(SRTM) data(Gesch, 2018; Hawker et al., 2019). We selected four data sets for use here based largely on recent 120 

studies, such as that by Gesch (2018), which finds that only some of the global DEMs are suitable for delineating the 

LECZ ≤10m elevation at or above the 68% confidence level, (including TanDEM-X, CoastalDEM, NASADEM, 

AW3D30, and MERIT DEM) whereas other data sets (such as SRTM) are not. (SRTM nonetheless is included here 

in order to compare to previous work.) Despite compelling interests from the policy arena, it should be noted that the 

implication of Gesch’s 2018 study is that delineating LECZs in finer increments than 10m is subject to great 125 

uncertainty. 
 

Major improvements of these data notwithstanding, we discuss below considerations specific to the coastal zone (such 

as detection of and correction for mangrove forests) and to urban areas (where manmade structures may bias 

measurement.) The 2019 study by Hawker et al. identifies the types of land cover that each of these data sets best 130 

detects or is prone to misinterpret (see graphical abstract and Table 4 in Hawker et al., 2019). While urban 

environments are evaluated in these recent studies, urban is just another land cover class. To our knowledge, no 

targeted or multi-criteria evaluation of these global elevations data sets in the urban setting has been made (but see 

related analysis of the built environment in cities (Esch et al., 2020)). Furthermore, case studies reveal that the data 

sets which perform best globally, on average, may not necessarily be the most accurate in a given location or under 135 

particular geographic conditions (Minderhoud et al., 2018, 2019). Notably these global DEMs tend to do a comparably 

poor job of capturing low-lying elevation in small island states (Taupo and Noy, 2016; Taupo et al., 2018; Yamano et 

al., 2007; Lewis, 1989). Once again, there are important policy implications here. 
 

The scientific community of modelers that produce the many relevant data sets and models to predict sea levels, tides, 140 

storm surges and other coastal flooding is large, growing and vibrant. Future LECZ estimates stand to be substantially 

improved by their current efforts. In this work, we have used global elevation data sets to construct LECZs using a 

simple but inclusive approach. Global hydrodynamics-based models could potentially provide a better basis for 

identifying some of the relevant hazards, including most notably those caused by flooding. However, at the time of 

this writing the results of global models that account for the fuller and complex set of factors at and connected to the 145 

seacoast are not available. Local studies (Schumann and Bates, 2018; Orton et al., 2020) suggest clearly that the 

hydrodynamics of the coastal zone are complex and nuanced, perhaps even more so in urban areas where impervious 

surface, underground infrastructure (sewage and subway systems), and other modifications to the landscape (including 

accumulations of uncollected solid waste) may impact inland flows and drainage. New work on coastal storm surges 

and tidal heights (Muis et al., 2020; Arns et al., 2020) and empirical flood events (Tellman et al., 2020) make new 150 

avenues of research possible in the coming years, but currently hydrodynamic modeling has been restricted to certain 

locations or events.  
 

Table 1. Elevation data sets used in the construction of the Low Elevation Coastal Zones (LECZ) 

Source Data Set on Elevation Abbreviation 
Input Spatial 

Resolution 
Acquisition (or modelling) 

Period 
Paper 

Reference 

Shuttle Radar Topography Mission 

Elevation Low Elevation Coastal 

Zones 
SRTM 3 arc second February 11-22, 2000 

(ISciences, 

2003) 

MERIT DEM: Multi-Error-

Removed Improved-Terrain DEM 
MERIT 3 arc second see SRTM and AW3D30 

(Yamazaki et 

al., 2017) 

TerraSAR-X add-on for Digital 

Elevation Measurement 90m 
TanDEM-X 3 arc second 2010-2015 

(Wessel et al., 

2018) 

CoastalDEM90 CoastalDEM 3 arc second 
see SRTM and AW3D30, 

plus LiDAR from 2003-

2009, 2015 

(Kulp and 

Strauss, 2018) 

ALOS World 3D - 30m Digital 

Surface Model  
AW3D30 1 arc second 2006-2011 

(Tadono et al., 

2014) 
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ALOS 30m global DEM is used as a supplement in CoastalDEM90 at latitudes north of 60N and south of 56S. It is also used as an input data set 

in the construction of MERIT DEM. 

 

2.1.1 SRTM  155 

The NASA Shuttle Radar Topography Mission (SRTM) set the standard for characterizing global elevations, but the 

SRTM data products, now nearly 20 years old, have been widely understood to have limitations in some critical areas. 

There is, for instance, high Root Mean Square Error (RMSE) in the elevation estimates of mangrove forests (Gesch, 

2018). These vertical errors (termed tree-height bias) are particularly problematic in some low-lying vegetated areas 

(such as in populous southeastern Bangladesh). A coastally contiguous derivation of SRTM was produced in 2003 by 160 

ISCIENCES, Ltd. and it was these data which were used in the first LECZ study (McGranahan et al., 2007b), and the 

NASA SEDAC update (Center for International Earth Science and Information Network - CIESIN - Columbia 

University, 2013). We include the same data here exclusively for the purpose of comparison with the original study. 

2.1.2 MERIT DEM 

The Multi-Error-Removed Improved-Terrain DEM (MERIT), “separated absolute bias, stripe noise, speckle noise and 165 

tree height bias using multiple satellite data sets and filtering techniques” to improve on the SRTM baseline (Yamazaki 

et al., 2017). The Japanese Aerospace Exploration Agency (JAXA) produces the ALOS Global Digital Surface Model 

(DSM) “ALOS World 3D - 30m” (AW3D30), which along with SRTM3 v2.1 was used as primary data in the 

construction of MERIT. In the land cover classes of short vegetation and forested areas, MERIT performs well when 

compared to locally available LiDAR data (Hawker et al., 2019). Compared to TanDEM-X, which Hawker et al. 170 

(2019) find to be of comparable overall accuracy, MERIT has a marginally higher Margin of Error (ME) (1.09 m), but 

lower Mean Absolute Error (MAE) (1.69 m) and RMSE (2.32 m). If the RMSE metric is the only metric considered, 

MERIT is the most accurate Global DEM across landcover types. Despite these many improvements, Gesch (2018) 

notes that MERIT has an RMSE of about 3m globally, which has implications for producing LECZs in finer 

increments below 10m. 175 

2.1.3 TanDEM-X 90 

TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X) departs from an SRTM baseline and provides 

a new synthetic-aperture radar (SAR) interferometry-based estimate of elevations globally (Wessel et al., 2018). 

TanDEM-X has been shown to be the most accurate global DEM in some landcover categories (bare, shrubland, sparse 

vegetation, urban) (Hawker et al., 2019), and at the 95% confidence level, Gesch (2018) finds that only TanDEM-X 180 

is suitable for delineating the LECZ below 10 meters. Wessel et al. (2018) found TanDEM-X to have biases in areas 

of rugged terrain, where there is heterogeneity in the landscape/landcover and elevation, and additional analyses have 

revealed that while TanDEM-X is highly accurate in flat to slightly undulating terrains, it tends to overestimate 

elevation when used in areas characterized by more sharply uneven terrain (Bhardwaj, 2019). Higher resolution 

versions of TanDEM-X (0.4 arc second and 1 arc second) are available through proposal and service fee for scientific 185 

use, but were not utilized in this study. While no study has closely examined the vertical accuracy of these DEMs 

globally for urban areas, Hawker and colleagues’ (2019) analysis does suggest that TanDEM-X may be well-suited to 

capturing elevation in core urban areas where high-rise buildings are common (For specific cities, some analysts have 

used TanDEM-X for urban elevation mapping (Rossi and Gernhardt, 2013) to construct urban extents (Esch et al., 

2012, 2013)). However, TanDEM-X's restrictive licensing limits dissemination and replicability, making it less useful 190 

for many purposes. 

2.1.4 CoastalDEM90 

CoastalDEM utilizes neural networks with an array of spatial covariates to improve on SRTM (see Fig.1 in Kulp & 

Strauss 2018). CoastalDEM90 is made available for research free of charge and a higher resolution (1 arc second) 

version of CoastalDEM is available with a licensing fee. AW3D30 was used as supplemental data for CoastalDEM in 195 

latitudes north of 60N and south of 56S as was done by the data authors. CoastalDEM is produced from a 23-

dimensional vertical error regression analysis using variables including neighborhood elevation values, pop density, 

land slope and local SRTM deviations from ICESat altitude observations and vegetation cover indices. Importantly, 

since one of the covariates is population density from LandScan 2010 (resampled to 1 arc second), estimation of 

population exposure in the LECZ is complicated since population itself was used to determine elevation values. 200 

Studies by the data producers show that in the Caribbean Basin, the CoastalDEM data provides greater vertical 
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accuracy than other data sets, including SRTM data and AW3D30 data set which both overestimate by more than 2m 

on average (Climate Central, 2018). However, Gesch (2018) notes that globally CoastalDEM, like MERIT, has an 

RMSE of about 3m, implying a need for caution when using it to delineate LECZs in increments finer than 10m. 

2.1.5 Core data choice - Elevation 205 

Hawker et al., (2019) evaluated the accuracy of global DEMs by land cover type and found that both TanDEM-X and 

MERIT outperform SRTM across all categories, and that MERIT achieves greater accuracy than TanDEM-X in short 

vegetation and forested land cover classes. CoastalDEM performs well in the Caribbean Basin (Climate Central, 

2018), but globally has a similar RMSE to MERIT. According to Gesch (2018), TanDEM-X, with an RMSE of 1.69m, 

can be used to delineate the ≤10m LECZ with the greatest confidence, but MERIT and CoastalDEM, which have 210 

RMSEs ~3m, can be used, albeit with somewhat less confidence (see Table 5 in Gesch, 2018). However, as is shown 

below, the precision of TanDEM-X results in a highly varied landscape, with raised roadways clearly identified at 

higher elevations than surrounding land. This results in wide areas of TanDEM-X losing their direct connectivity to 

the coast according to image segmentation (region grouping) methods, and therefore removes them from the LECZ, 

which requires coastal contiguity. Additional research on the presence of natural (wetlands, floodplains), and 215 

manmade (raised berms, buildings) barriers, as well as connections (sewer systems, stormwater management 

systems/culverts, estuaries, and other water channels) is needed in order to improve the TanDEM-X-based LECZ.  
  
We have selected MERIT as the core elevation data set. This is because of the complications with identifying coastal 

connections in TanDEM-X, and since MERIT is the only elevation data set considered which is both accurate (Gesch, 220 

2018; Hawker et al., 2019), and has wide dissemination rights (open for use both non-commercially and commercially, 

so that any data we create from it can be widely and openly distributed as well, both in spatial and tabular format 

(Yamazaki et al., 2017)).  
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 225 
Figure 1. Elevation source data for constructing Low Elevation Coastal Zones (LECZ), Bangkok and surrounding areas, 

Thailand. Note that the darkest blue indicates ocean and gray boundaries indicate first-order administrative boundaries.   

2.2 Data on Population  

For population data, we compared several data sets from the leading producers of global population data, listed in 

Table 2 and visualized for Bangkok in Fig. 2. Mondal and Tatem, 2012, as well as Lichter et al., 2010, compared 230 

several gridded population data sets and recommended that studies utilizing a particular data set should acknowledge 

how the inherent uncertainties of the underlying input data and methods are likely to impact conclusions. A recent and 

thorough review by Leyk et al., 2019 discussed the nature and source of these uncertainties at great length. 

Characteristics such as the relative resolution of underlying input vector data sets, the selection and relative accuracy 
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of spatial covariates for dasymetric maps, and the currency of population estimates all have major impacts on grid 235 

level population counts. For a full description of each of these, including strengths and weaknesses, please see Leyk 

et al. 2019, and Table 2 for the selection of data sets we use herein.  
 

Table 2. Population data sets used to estimate persons living in the Low Elevation Coastal Zones (LECZ) 

Source Data Set on Population Abbreviation 
Input Spatial 

Resolution 
Temporal 

Resolution 
Paper Reference 

Global Human Settlement Layer - 

Population Grid r2019a 
GHS-POP 9 arc sec 

1990, 2000, 

2015 
(Florczyk et al., 2019) 

Gridded Population of the World, 

version. 4.11 
GPW v4.11 30 arc sec 

1990, 2000, 

2015 
(Doxsey-Whitfield et al., 

2015) 

LandScan 2015 High Resolution 

Population Data Set 
LandScan 30 arc sec 2000, 2015 

(Bright and Coleman, 

2001; Bright et al., 2016) 

WorldPop Global High Resolution 

Population Denominators 
WorldPop 3 arc sec 2000, 2015 (Lloyd et al., 2019) 

 

2.2.1 GPW 240 

Gridded Population of the World version 4.11 (GPW) is a minimally-modeled 30 arc second horizontal resolution 

data set which uses source data from the 2010 round of international censuses. Because GPW uses a uniform allocation 

across space to distribute census-based populations across the smallest areas for which population estimates were 

made available, the accuracy of its estimates at a pixel level is very closely linked to the relative resolution of input 

vector data. The layer “Mean Administrative Unit Area” in the GPW data collection provides an indicator of the 245 

relative size of input geographies (Administrative areas refer here loosely to the units in which census data are reported 

and may include enumeration areas, which typically are statistical rather than administrative, as well as truly 

administrative areas used for reporting) and is used here along with the GPW UN-WPP Adjusted Population Counts 

data set, which adjusts census reported national totals to estimates from the UN World Population Prospects (Doxsey-

Whitfield et al., 2015; United Nations, 2018). When overlaying a population grid with irregularly-shaped and variably-250 

sized zones (such as a narrow LECZ in some locations), a uniform allocation method of coarse underlying data will 

sometimes lead to misestimation (Mondal and Tatem, 2012; Balk, 2009). However, an important advantage of the 

uniform allocation approach is that these data do not include additional spatial layers which could themselves be the 

source of errors and uncertainties. 

2.2.2 GHS-POP 255 

The Global Human Settlement Population Grid r2019a (GHS-POP) is derived from GPW inputs and the Global 

Human Settlement Layer (GHSL) built-up data set (GHS-BUILT (Pesaresi et al., 2016), also discussed below) to 

improve the horizontal resolution and positional accuracy of free and open population data (Freire et al., 2016). A 

distinguishing characteristic of GHS-POP is the use of the GHS-BUILT time series, which was derived from satellite 

observations from the LandSat program’s long history of earth observations. GHS-POP data uses a dasymetric 260 

mapping approach at a 9 arc second horizontal resolution to reallocate GPW census inputs based on the percentage 

built-up, as defined by GHS-BUILT (Freire et al., 2016). In this approach, population from large, sparsely populated 

administrative units is moved to the detected built-up areas rather than being assumed to be evenly distributed 

throughout the entire polygon: reallocation of population occurs in proportion to the distribution of built-up area 

(within a given cell), otherwise areal weighting is applied (see Fig. 2 in Freire et al., 2016). Because GHS-POP relies 265 

on GHS-BUILT, for which detection in sparse and rural areas is lacking (Leyk et al., 2018), it may tend to over-

concentrate population into built-up  areas, overestimating the number of urban residents (depending on how urban 

areas themselves are delineated). GHS-POP has been shown in recent studies to produce the most accurate pixel-level 
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population estimates when compared to local data for some locations, especially in urban areas (Archila Bustos et al., 

2020; Calka and Bielecka, 2020). 270 

2.2.3 WorldPop  

WorldPop Global High Resolution Population Denominators (WorldPop) also uses census-based population inputs 

from GPW to produce estimates for 2000 and 2015 (it does not include 1990). Its disaggregation approach uses 

country-specific machine learning (ML)-based dasymetric models which employ random forest classifications to 

disaggregate population on the basis of a variety of spatial covariate layers such as slope, impervious surface, night-275 

time lights and others (Lloyd et al., 2019; Gaughan et al., 2015). WorldPop produces population estimates at a 3 arc 

second horizontal resolution, which is the same resolution as the input elevation data. Importantly, the covariate data 

used to delineate WorldPop estimates are static for the year that they were collected (even though some represent 

time-varying characteristics, like the night-time lights), and therefore the spatial distributions of population estimates 

are also static. Despite this, WorldPop has been shown to produce accurate disaggregations in many locations (see for 280 

example, Bai et al., 2018; Chen et al., 2020; Mohanty and Simonovic, 2021) and is widely used particularly in health 

applications. Like GPW, WorldPop is highly transparent in the methods and underlying inputs used in its creation.  

2.2.4 LandScan  

Oak Ridge National Laboratory’s LandScan data set uses input population data from a variety of sources, (including 

censuses, surveys, work and school registers, and other sources), and a ML-based dasymetric model (including use of 285 

a wide-variety of covariates) to produce annual population estimates for 2000 and 2015 (it does not include 1990). It 

deviates from the other population data sets in that it aims to measure ambient population – that is, population 

distribution averaged over a 24-hour period, rather than census de jure measures linked to usual residence. LandScan 

Global is a 30 arc second population surface which is not directly comparable year over year since methodologies are 

updated with each release (Bright and Coleman, 2001; Bright et al., 2016; Rose and Bright, 2014). Thus LandScan is 290 

not suitable for use as a time-series. The ML model used by LandScan is proprietary, so the efficacy of covariate 

sources cannot be evaluated, and LandScan is not free and publicly available for non-commercial and commercial use. 

Nevertheless, LandScan is a spatial population data set that is often used in policy-making (Leyk et al., 2019) and has 

produced accurate disaggregations in many locations. For applications requiring ambient rather than de jure 

population estimates, LandScan is suitable.   295 

2.2.5 Core data choice - Population 

Unlike physical data (elevation), the evaluation of the accuracy of gridded population data is complicated by the 

unavailability of baseline population estimates. Estimates from census and survey sources are static, and human 

mobility makes it difficult to validate those sources. Leyk et al., 2019 discuss the strengths and weaknesses of global 

population data sets in great detail, and help data users select the best data for their specific use. For our analysis, 300 

being able to construct estimates of population in the LECZ for a 25-year interval (from 1990-2015) was important, 

in order to evaluate population change in different settlement types. Therefore, because GHS-POP is the only data 

representing a true time series in regards to the underlying spatial structure, and was acceptable in other regards as 

mentioned above, it was chosen as our core population data set.  
 305 
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Figure 2. Population source data, Bangkok and surrounding areas, Thailand, 2015. Note that the dark blue indicates ocean 

and gray boundaries indicate first-order administrative boundaries. (These images show the processed 9-arc second data 

rather than the higher resolution inputs, given that the resolution differences are hard to detect in this visualization.)  

2.3 Data on Urban Proxy 310 

There is no authoritative source of data to delineate urban areas in an internationally comparable manner. Indeed 

national statistical agencies and different disciplines have different ways to measure urbanization (Buettner, 2015; 

Uchiyama and Mori, 2017). Yet since the Global Rural Urban Mapping Project (Balk, 2009; Center for International 

Earth Science Information Network - CIESIN - Columbia University et al., 2021) – the first-ever global, spatial 

rendering of urban areas and the data set used in McGranahan et al. (2007) – as with the above advances in elevation 315 

data and population models, there have been many advancements in data, models and methods which have led to many 

new data sets that aim to to capture settlements across the urban-rural continuum. All of these various new efforts to 

capture urban areas use proxy data sets – such as night-time lights (dLIGHT, GRUMP) or built-up area (GHS-BUILT, 

GHS-SMOD) – that measure conceptually different dimensions of urban. The data sets selected for this study are 
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listed in Table 3. Two of the data sets we consider represent physical processes whose spatial concentration is closely 320 

related to urban settlement (dLIGHT, GHS-BUILT) while two are more heavily modelled with the goal of urban 

classification (GRUMP, GHS-SMOD). All of the new underlying inputs (not including GRUMP) can be expressed as 

continuous data, which is important for representing a fuller urban-rural continuum (Dorélien et al., 2013), here we 

classify the urban proxy inputs into three large classes, described in the methods section below. 
 325 

Table 3.  Urban Proxy data sets used to estimate persons living in the Low Elevation Coastal Zones (LECZ) 

Source Data Set on Urban Proxies Abbreviation 
Input Spatial 

Resolution 
Temporal 

Resolution* 
Paper Reference 

Global Rural Urban Mapping Project 

- Urban Extents Grid v1 
GRUMP 30 arc second 1994-95 (Balk, 2009) 

VIIRS Plus DMSP Change in Lights 

(VIIRS+DMSP dLIGHT), v1 (1992, 

2002, 2013) 
dLIGHT 15 arc second 1992, 2002, 2013 

(Small and CIESIN- 

Columbia University, 

2020) 

Global Human Settlement- Built-Up 

Grid r2018a 
GHS-BUILT 9 arc second 

1975, 1990, 

2000, 2014* 
(Corbane et al., 2018) 

Global Human Settlement - “Degree 

of Urbanization” model Grid r2019a 

v2 
GHS-SMOD 30 arc second 1990, 2000, 2015 (Pesaresi et al., 2016) 

*The temporal resolution represents acquisition years of the underlying satellite data, for GRUMP, dLight and GHS-BUILT. 

GHS-BUILT creates ‘epochs’, that is, the period by which observation(s) was (were) made, in contrast, VIIRS and the night-

time lights on which GRUMP was based represent observations from a more narrow temporal range (such as one year). The 

temporal resolution of GHS-SMOD, being based on GPW and GHS-BUILT, indicates the specified target output year of the 

variables in question.  

 

2.3.1 GRUMP 

The Global Rural Urban Mapping Project (GRUMP) Urban Extents Grid v1 was the first gridded global data product 

to delineate urban areas (Center for International Earth Science Information Network - CIESIN - Columbia University 

et al., 2021). This was accomplished through the use of stable-city (Nighttime) Lights observations from the Defense 330 

Meteorological Satellite Program Operational Line Scanner (DMSP-OLS) circa 1995 (Elvidge et al., 1999; Small et 

al., 2005) and confirmed by the presence of a named settlement above a certain population size (5,000 persons, where 

the data collection permitted). To address gaps in DMSP-OLS, these data were supplemented by “alternate sources 

(e.g. Tactical Pilotage Charts), or approximated by circles whose sizes were given by population–area relationships 

calibrated (through a regression analysis) on existing data” (Balk, 2009). GRUMP is distributed at a 30 arc second 335 

horizontal resolution. While GRUMP has been widely used, because its urban footprint is based on the stable-city 

lights known for their blooming quality (Small et al., 2005), it is well known to be an inclusive measure of urban 

extents. Furthermore, the spatial extent of the urban area represents a simple dichotomy: urban or rural. For this reason, 

GRUMP (like the original SRTM-based LECZ) is only included here for the purpose of comparison with the original 

study. 340 

2.3.2 dLIGHT 

Because night-time lights have been shown to be a good proxy for economic activity (Henderson et al., 2012; 

Donaldson and Storeygard, 2016; Ghosh et al., 2009) and because the spatial concentration of economic activity is 

associated with urban location, night-time lights data products continue to be a valuable data source as an urban proxy 

(Hu et al., 2020). The VIIRS Plus DMSP Change in Lights, v1 (dLIGHT) data set depicts the relative luminosity in 345 

stable lights areas (as determined by VIIRS annual composites for the year 2015) for the years 1992, 2002, and 2013 

respectively (Small and Center For International Earth Science Information Network-CIESIN-Columbia University, 

2020). The dLIGHT data set combines nighttime lights imagery from DMSP-OLS with a stable night light composite 

from Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Suite (VIIRS) Day-Night Band in a 

15 arc second horizontal resolution grid. While dLIGHT makes great improvements in resolution and accuracy over 350 

DMSP-OLS, it represents relative changes in brightness of the DMSP-OLS sensor, and is constrained to lit areas based 

on the 2015 VIIRS data (Small et al., 2018a). Like some of the data sets used here, dLIGHT is a new data product and 

has not been used extensively with other data sets indicating the spatial extents (and change thereof) of urban areas. 
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While there has been continued improvement to reduce gas flares from the underlying data products, because gas 

flares are not expected to be associated with urban areas (Elvidge et al., 2009), it is also understood that not all 355 

economic or human activity is accompanied by light sources, particularly in poor economies or in particular land 

covers (such as deserts) (Stokes and Seto, 2019).  

2.3.3 GHS-BUILT 

Another approach to urban representation comes from a land-use perspective. Early work in this area classified pixels 

from moderate resolution satellite-data products detecting vegetation (e.g. Normalized Difference Vegetation Index 360 

(NDVI)) that were typically heterogeneous and residual, and thus did not represent specific land-use classes found 

outside urban localities (Potere et al., 2009; Schneider et al., 2010): in other words, this approach did not directly 

detect structures or features typically concentrated spatially in urban areas (buildings, roads, etc). Developments in 

ML approaches and related modelling have led to a new class of derived products that explicitly classify built features 

commonly concentrated in urban settings. Recent global-scale efforts include NASA SEDAC’s Global Man-made 365 

Impervious Surface (GMIS), the European Commissions’ Joint Research Center’s GHSL, and the German Aerospace 

Center’s World Settlement Footprint (WSF) projects (Esch et al., 2018; Marconcini et al., 2020). Here we use two 

products from the GHSL suite. GHS-BUILT represents estimations of built-up presence as derived from LandSat 

image collections. Built-up estimates are provided for the epochs 1975, 1990, 2000, and 2014 (Florczyk et al., 2019). 

At its core are more than 40,000 LandSat scenes which have been processed in a consistent manner across countries 370 

and over time using advanced machine learning algorithms (Pesaresi et al., 2016). The 1 arc second data are binary, 

indicating either the presence or absence of a built structure and are aggregated to 3 arc second to represent the fraction 

of built-up land in each pixel. This data set has been cross-validated or analyzed with census-designated classes of 

urbanization in the recent studies of the U.S (Balk et al., 2018; Leyk et al., 2018), and generally confirmed the accuracy 

of the GHSL algorithms except in very sparsely settled rural regions (Leyk et al., 2018). One feature of this data set 375 

that some would consider to be a disadvantage is that once a location is detected as built-up, that location remains 

built and while it can become more built-up it cannot become un-built. Similarly, in the version of GHS-BUILT used 

here all built structures are treated equally: future versions of this data set will distinguish industrial built structure 

from other types.  

2.3.4 GHS-SMOD Degree of Urbanization (DoU) 380 

The Global Human Settlement - “Degree of urbanization” model Grid r2019a v2 (GHS-SMOD) delineates settlement 

types by modeling population size, and population and built-up area densities from GHS-POP and GHS-BUILT to 

construct a “degree of urbanization” grid (Florczyk et al., 2019). This modelled surface uses built-up area (GHS-

BUILT) along with population data (GHS-POP) and a set of density and proximity criteria to classify population and 

land area into seven classes (plus a category for inland open water) along an urban-rural continuum. This new data 385 

product has not yet been cross-validated in the peer-reviewed literature, but such studies are underway and it has 

already been used in policy applications (Henderson et al., 2012; OECD and European Commission, 2020; 

Colenbrander et al., 2019). The Degree of Urbanization methodology has been endorsed by the UN Statistical 

Commission as a means of identifying areas as being urban to different degrees (Dijkstra et al., 2020, 2019; OECD 

and European Commission, 2020).  390 
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Figure 3. Urban proxy source data, Bangkok and surrounding areas, Thailand. Note that the dark blue indicates ocean and 

gray boundaries indicate first-order administrative boundaries.   

2.3.5 Core data choice - Urban Proxy 395 

The choice of a core data set to delineate urban areas was based on three criteria: availability of time-series, consistency 

with the population data, and intentionality to capture a continuum of urban locations. Of the four data sets included, 

only GHS-SMOD and GRUMP claim by design to represent urban extents. Between these, we select GHS-SMOD as 

the core data set for this analysis as it allows us to consider change over time (and allows for the longest temporal 

comparison). GHS-SMOD classifies grids cells into an urban-rural continuum based directly on GHS-POP and GHS-400 

BUILT data for each epoch, which makes population and urban proxy data spatially consistent. Nevertheless, given 

that validation of the GHS-SMOD is only just under way, we reduced the seven native classes (GHS-SMOD Level 2, 

Florczyk et al., 2019) to three broad classes (Level 1) as described below. 
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2.4 Other data sets 

In addition to the elevation, population, and urban proxy data sets described in the preceding section, a number of 405 

ancillary data sets were also considered.  

2.4.1 National Identifier Grid  

The GPW collection (Center for International Earth Science Information Network - CIESIN - Columbia University, 

2018) includes an ancillary National Identifier Grid (NID) which we have used to represent the extents of countries 

and territories in this analysis in order to construct summary statistics for these units. GPW is the only one of the 410 

population data sets that includes this information. (None of the elevation or urban proxy data sets include this 

information.) The horizontal resolution of the NID is 30 arc seconds.  

2.4.2 Area Grids 

The land area grid from the GPW Land and Water Area data set (Center for International Earth Science Information 

Network - CIESIN - Columbia University, 2018) forms the basis of the land area estimates in this study. The land area 415 

grid is a surface which accounts for the reduction in the underlying area of regular rectangular grid cells as they 

approach the poles. This allows for accurate area measurements without requiring the use of an Equal Area projection. 
 

Additionally, a Mean Administrative Unit Area raster is part of the GPW collection’s data quality indicators data set 

(Center for International Earth Science Information Network - CIESIN - Columbia University, 2018). It represents 420 

the nominal resolution of input vector geographies which were matched to census population estimates prior to 

gridding. Since GPW population counts and density data are created with a uniform allocation method, the Mean 

Administrative Unit Area raster is essential for understanding the precision and accuracy of pixel level population 

estimates across and within countries. 

2.4.3 Built-up Density 425 

GHS-BUILT is the building block of the GHSL data collection; it is a multitemporal information layer on built-up 

presence as derived from LandSat image collections (GLS1975, GLS1990, GLS2000, and ad-hoc Landsat 8 collection 

2013/2014)(Corbane et al., 2018)). In addition to forming the basis for GHS-POP and GHS-SMOD, the GHS-BUILT 

data set at its core provides information on the density (sometimes referred to as intensity) or percentage of land that 

is developed with built-structures. Measured as whether a 3 arc second pixel is made up of more built surfaces than 430 

not, then aggregated to 9 arc second to represent the percentage of cell that is built, the fraction “built-up” ranges from 

0-100. (GHSL measures area, not volume such as the vertical dimension of built-up areas or cities.) Elsewhere these 

data have been used to describe change in the extent or footprint of the urban environment (Balk et al., 2018) and as 

an indicator for urbanization of land area (Liu and Balk, 2020; Pinchoff et al., 2020; Gao and O’Neill, 2020). We use 

it independently to evaluate how much land in the LECZ is built-up. 435 

2.5 Methods 

As shown in Fig. 4, the methodologies used to produce the new data layers for this study (i.e., LECZ and urban-rural 

classifications) followed this sequence: first, elevation data were preprocessed into common frameworks and subset 

by country boundaries as defined by the GPW NID. Then, areas contiguous to the coast were identified to create 

LECZs that are classified as up to 5m, 5-10m and above 10m. Next, urban proxy data sets were conditioned into 440 

common thematic classes (classified broadly as urban, quasi-urban and rural), harmonized into a common horizontal 

resolution and subset by the NID. Similarly, population data sets were harmonized into a common horizontal 

resolution and subset. Area data from the GPW land area grid and Mean Administrative Unit area grid, along with 

built-up percentages from GHS-BUILT were also harmonized and subset. Finally, using spatial overlays and zonal 

statistics, we constructed estimates of population, land area and built-up density that are summarized by country, urban 445 

class, and LECZ. The methodology is depicted in the flow chart (Fig. 4) and described in detail below. 
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Figure 4. Flow chart describing methods used to construct population and land area along an urban continuum in Low 

Elevation Coastal Zones (LECZs)  

2.5.1 Elevation 450 

The LECZ are constructed from elevation data with one main rule applied to it: contiguity to coast-line. We construct 

two zones – 0-5 meters (including 5.0) and 5-10 (including 10.0) meters contiguous to coast – and compare these with 

all other areas within a country, that is, those areas above 10 meters (or at or below 10 meters, but not contiguous to 

coastline). The ≤10m LECZ is constructed by combining the ≤5m and 5-10m zones. 
 455 

Elevation data from four sources were used, each projected to WGS84 horizontal coordinate system with EGM96 

geoid heights: MERIT, SRTM, TanDEM-X, CoastalDEM (see Table 1). In vertical terms, these elevation data models 

aim to set zero elevation at mean sea level using global datums with local variation. Out of the 4 DEMs evaluated, 3 

of them (SRTM, MERIT, CoastalDEM) were referenced to the EGM96 Vertical Coordinate System (EPSG:5773). 

Only TanDEM-X was not. TanDEM-X 90 elevations are referenced to the WGS84 (G1150) ellipsoid (EPSG:4979). 460 

Therefore TanDEM-X was converted from its native WGS84 ellipsoidal heights to EGM96 geoid heights using the 

GDAL Warp tool. Each of these high resolution DEMs were obtained from data distributions which followed regular, 

but unique tiling schemes. Tiling of high resolution raster data is often necessary to control for file size and usability 

(e.g. memory footprint), with the cost of complicating global scale analyses when different data sets use their own 

schemes. Therefore, each of the DEMs were preprocessed into country units to enable the ultimate goal of country 465 

scale analyses, and to harmonize the objects to be processed apart from their unique tiling schemes. This was 

accomplished by loading the elevation tiles into an ESRI File Geodatabase Mosaic Data set, which includes vector 

layers (footprints) of the input raster extents that identify the file name and location of each input.  
 

Next, a python script was used to clip the vectorized raster footprints by country boundaries extracted from the NID. 470 

This created country level layers with attributes (file names and locations) from intersecting footprints for each of the 

elevation sources which were used to isolate a subset list of elevation tiles belonging to a given country. Those subset 

lists were then mosaicked into country specific DEMs using the ArcGIS Mosaic to New Raster tool with the MEAN 

mosaic method; when a country was completely covered by a single tile, that tile was simply used without need for 

mosaic. All of the elevation data were then aggregated with the MEAN method of the ArcGIS Aggregate tool to a 9 475 

arc second horizontal resolution.  

2.5.2 Determining Coastal Contiguity 

 

Buffering the coastline 
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There is no international standard for coastlines, and administrative boundary data sets may or may not conform 480 

strictly to the physical reality of the coastline (Mcleod et al., 2010). Elevation data sets sometimes include 

representations of coastlines, but this too may differ between sources: for example, SRTM, MERIT-DEM and 

TanDEM-X use different implied coastline beyond which elevation is assumed to be zero but CoastalDEM does not. 

This discordance in the definition of a coastline occurs for many reasons including (1) administrative boundaries that 

intentionally include water bodies for which there is jurisdiction; (2) coarse scale administrative boundaries that are 485 

likely to be imprecise with respect to the physical coastline; and (3) the nature of physical coastlines to change over 

time (daily, monthly, yearly), which impacts both administrative and elevation sources based on the date of their data 

capture.  
 

The problem of coastline disagreement is compounded for gridded data, where precise vectorized coastlines are 490 

pixelated in accordance with the raster resolution. The NID used in this study to represent coastlines has a native 

resolution of 30 ArcSeconds which implies some imprecision. However, the NID was used so that zonal statistics of 

population grids could capture, and not double count, every populated pixel in one and only one country. In this 

analysis, where the overlay of the administrative data with elevation data at the coastline matters for estimation, 

alignment between the input spatial layers is paramount. This is particularly true for those small island nations where 495 

the majority of their land area is coastal, and therefore mismatches can lead to substantial misestimation of land area 

and population in the LECZ. 
 

In order to prevent the loss of population due to coastline mismatches, or the loss of LECZ land area when the elevation 

data source uses a coastline that is seaward of the NID, the NID is buffered by 1 km on a per country basis in order to 500 

create an inclusive coastline definition which accounts for imprecision. Examples of these problem areas – and with 

and without this buffer – are shown in Fig. 5 for the case of Sri Lanka. The inclusive version was utilized in this work. 

 
Figure 5. MERIT-DEM LECZ constructed strictly and inclusively (with 1km buffer), Sri Lanka.   

 505 

2.5.3 Isolating Coastally Contiguous Regions 
The 9 arc second country elevation mosaics for each elevation source were reclassified into integers for the following 

zones: ≤5m, 5 to 10m and greater than 10m. For example all continuous values less than or equal to 5 were assigned 
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a value of 5, all values greater than 5 and less than or equal to 10 were assigned a value of 10, and all values greater 

than 10 or not contiguous to coast below 10m were assigned an arbitrary value of 31. The reclassified images were 510 

extracted by attribute into ≤5m, and ≤10m rasters, and were then segmented with the ArcGIS “Region Group” tool 

with eight neighbors using the WITHIN parameter. Region-grouped images are those where groups of pixels with like 

values are combined such that each connected group (region) receives its own unique identifier along with a count of 

the number of pixels within the grouping (for example see cute cat picture in the appendix Fig. B1). In order to isolate 

coastally contiguous regions, the region-grouped images were converted into polygons and selected by location where 515 

each polygon intersected the border of a country as determined from the 1km buffered NID. This effectively isolated 

all regions connected to administrative boundaries. Since this could potentially include inland areas, each of the files 

were visually inspected in order to identify spurious lowland areas contiguous with inland country boundaries 

(although laborious, this quality check was completed within 1-2 days of effort.) When errors were discovered, they 

were manually removed. The isolated, quality assured regions were then used as extraction masks on the reclassified 520 

DEMs and null inland values were coded as above 10m (the corresponding value in our resulting spatial data is coded 

as 31). The resulting rasters contained coastally contiguous pixels coded into ≤5m and 5-10m LECZs, and a third 

category representing the area outside of LECZs. Figure 6 shows the final LECZ designations for Bangkok Thailand 

by elevation source. 
 525 
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Figure 6. Low Elevation Coastal Zones (LECZ) constructed from source DEMs, Bangkok and surrounding areas, Thailand. 

Note that the darkest blue indicates ocean and gray boundaries indicate first-order administrative boundaries.    

2.5.4 Population 

As introduced in Table 2, four population sources were utilized: GHS-POP (1990, 2000, 2015), GPW (1990, 2000, 530 

2015), WorldPop (2000, 2015), and LandScan (2000, 2015). The horizontal resolution of these data sets vary: 

WorldPop is 3 arc second, GHS-POP is 9 arc second, and both GPW and LandScan are 30 arc second. Therefore, 

methods for constructing comparable resolution population data sets and subsetting into countries varied as follows: 

(1) WorldPop was aggregated from 3 arc second to 9 arc second using the ArcGIS Aggregate tool with the SUM 

method and then subset; (2) GHS-POP was simply subset at its native 9 arc second resolution; and (3) GPW and 535 

LandScan were uniformly disaggregated by a factor of 100 and quality assured to have the same total population 

before and after the sampling, then subset by country. Population distributions shown in Fig. 2 represent these data 

processed to 9-arc second (nominally 300m) resolution.  
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2.5.5 Urban Proxy 

Official UN urban population statistics (United Nations, 2018) are based on the very wide range of country-specific 540 

procedures for classifying areas as urban. This variation in urban definitions presents significant challenges in making 

international urban comparisons. Further, these statistics do not correspond to a spatial data set, making it impossible 

to use with spatial data to estimate urban (or rural) populations residing in LECZ. Thus, leveraging recent global 

efforts (e.g., Dijkstra et al., 2020, 2019; Pesaresi et al., 2019; Florczyk et al., 2019; Small et al., 2018; Corbane et al., 

2018; Balk, 2009), and precedent used in McGranahan et al. (2007), we rely on satellite depictions to distinguish 545 

settlements and places along an urban-rural continuum. As in Table 3, four data sources were used: GHS-SMOD; 

GHS-BUILT, GRUMP; and dLIGHT. The horizontal resolution of GHS-BUILT is 9 arc second, dLIGHT is 15 arc 

second, and both GHS-SMOD and GRUMP are 30 arc second. All of these data sets were natively in the WGS84 

coordinate system except for GHS-BUILT which is natively in the World Mollweide Equal Area Projection. As with 

population, these data were conditioned into a common 9 arc second horizontal resolution through uniform 550 

upsampling, but using a Nearest Neighbor approach since the underlying data is categorical. GHS-BUILT was also 

projected into the WGS84 coordinate system with Nearest Neighbor cell assignment at 9 arc second. All of these data 

sets were subset by country using the NID. 

2.5.6 Constructing Classes along an Urban-Rural Continuum 

While the underlying urban proxy data (Table 4) are continuous or ordinal along many classes, for the purposes of our 555 

summaries here we constructed three simplified, common thematic categories: Urban, Quasi-Urban, and Rural. It was 

not possible to do this for the GRUMP data set, which includes only two classes, described urban and rural, but which 

is nonetheless summarized here in order to compare with the benchmark study by McGranahan et al., 2007b, which 

was the first of its kind to delineate urban population in the LECZ. 
 560 

It is worth noting that this represents an important improvement from estimates in McGranahan et al., 2007b, and that 

newer, more recent estimates of global populations in the LECZ (Kulp and Strauss, 2019 which showcases 

CoastalDEM), do not stratify by any urban-rural classes. Other studies have highlighted population in case-study cities 

(Small et al., 2018b; Ahmed et al., 2018; Khan et al., 2019) but these are not global in extent; others have focused on 

types of cities (such as ports, De Sherbinin et al., 2007 or megacities, Nicholls, 1995) at risk.  565 

 

In creating a globally applicable urban-rural categorization, inserting a quasi-urban category serves to acknowledge 

that urban-rural is a continuum, and explicitly separates out a hard-to-classify and rapidly evolving, but not especially 

large, middle range of localities. Historically, emphasis on cities, and large ones at that, has been in part because these 

localities are populous, but also arguably consistent in some basic aspects of form (largely built-up for example, or 570 

with population densities above a given threshold), which makes them easier to identify in imagery (L.Imhoff et al., 

1997; Schneider et al., 2010). Similarly, areas identified as rural have a largely consistent signature (Doll and Pachauri, 

2010). Debate arises over the treatment of the heterogeneous collection of places such as small towns, suburbs, and 

peri-urban settlements. Whether these should be considered urban is open to interpretation, and may not be discernible 

using features like nighttime lights, population density and built-up area. Many countries, for example, include 575 

administrative criteria or use others based on country-specific criteria in their identification of urban areas (United 

Nations, 2018). While such variation undermines international comparability, it can make the classification more 

useful locally. Variation also exists, however, among urban-rural allocation procedures designed to be internationally 

comparable, such as those included here, and remains even when this variation is mitigated somewhat by introducing 

the category of quasi-urban.  580 

 

GHS-SMOD was dissolved using the ArcGIS reclassify tool from its native seven classes of settlement (level 2 

classification), into three classes: urban, quasi-urban and rural. This type of aggregation is inherent to the GHS-SMOD 

data set as the level 1 classification structure (Florcyk et al., 2019). GHS-BUILT is made up of estimates of the 

percentage of built-up in a given 9 arc second pixel. The raw GHS-BUILT data was thresholded into urban (> 50% 585 

built-up), quasi-urban (> 3% and ≤ 50% built-up), and rural (≤ 3% built-up) using the ArcGIS Reclassify tool; as 3% 

built-up is used as a delineation of classes in GHS-SMOD that fall into the quasi-urban class, we used here for the 

threshold of GHS-BUILT as well. dLIGHT (Small and Center For International Earth Science Information Network-

CIESIN-Columbia University, 2020) is made up of digital numbers (dn), 0 to 255, which represent the relative 

luminosity of pixels across the time periods represented in the data set (1992, 2002, 2013). Cross-classifying this with 590 

other urban depictions was done by visually comparing dLIGHT with GHS-SMOD and GHS-BUILT to find areas of 
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agreement to guide thresholding. Based on this, the raw dLIGHT data was thresholded into urban (> 100 dn), quasi-

urban (> 3 and < 100 dn), and rural (< 3 dn) using the ArcGIS Reclassify tool.  
 

Table 4. Urban Proxy Data Sets: Specifications of Underlying inputs Classification Schema 

  Criteria used for each urban proxy data set* 

Short formal 

description 
Intuitive 

description GHS-SMOD GHS-

BUILT dLight 

Urban Centers Cities A cell that is part of a cluster along with its 4 contiguous and 

directly adjacent grid cells, in which: 
> 50% built-

up 
> 100 dn 

 
Density ≥ 1,500 inhabitants/km2 within the cell and at least 

50,000 inhabitants in cluster; or 
 

50% built-up surface share on permanent land 

Quasi-Urban 

Clusters 
Towns, peri-urban 

areas, suburbs 
A cell that is not urban but is part of a cluster with its 8 

adjacent or diagonally contiguous grid cells with: 
> 3% and ≤ 

50% built-up 
> 3 and < 

100 dn 
 

Density ≥ 300 inhabitants/km2 in the cell and at least 5,000 

inhabitants in the cluster; or 

 

 
> 3% built-up surface share on permanent land 

 

Rural grid cells Rural areas All cells not belonging to Quasi-Urban Clusters or Urban 

Centers (i.e. generally, density < 300 inhabitants/km2. 

≤ 3% built-

up 
< 3 dn 

Greater density is possible for rural cells if cells are not part of 

a cluster with sufficient total population to be classified as 

quasi-urban cluster or urban center 

*GRUMP is constructed as a dichotomous urban-rural grid. Due to its construction, it is known to include a lot of land area that 

might be classified as quasi-urban (peri-urban and suburban-type areas extending beyond core urban areas). 

** See additional detail on the Degree of Urbanization (GHS-SMOD) construction in Florczyk 2019. 
 595 
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Figure 7. Urban proxy data classified into urban, quasi-urban and rural, Bangkok and surrounding areas, Thailand. Note 

that the dark blue indicates ocean and gray boundaries indicate first-order administrative boundaries.   600 

2.5.7 Other Data Sets 

The GPW land area grid had a native horizontal resolution of 30 arc seconds. It was uniformly upsampled to 9 arc 

second resolution by a factor of 100 and quality assured to have the same total land area per pixel both before and 

after the sampling, then it was subset by country. The mean administrative unit area grid also had a native horizontal 

of 30 arc seconds, but because the values in this grid represent the average size of input population units, there was 605 

no need to upsample. These data were simply resampled at 9 arc second resolution and subset by country. GHS-

BUILT was used here not only to discriminate between urban, quasi-urban and rural as a categorical data set, but also 

to summarize built-up densities as a measure in its own right. It was projected from the World Mollweide projected 

coordinate system into WGS84 coordinates using Nearest Neighbor at 9 arc seconds, and subset by country. 
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2.5.8 Calculating Summary Statistics 610 

We produce estimates for each of the permutations of these 12 sources using the ArcGIS Zonal Statistics as Table 

tool, by country. A Python script was then used to compile these data into a single master table. These tabular data are 

summarized for the globe in this section and are available along with spatial data and a python notebook demonstrating 

how to produce LECZs here.  
 615 

We used 9 arc seconds as the horizontal resolution of analysis, despite the native resolutions of elevation data nominaly 

being 3 arc seconds. The reason for this is in order to leverage GHSL layers, which are the only data sets which have 

data for 3 points in time, without simply applying growth rates to a single spatial structure. GHSL’s native resolution 

is 9 arc seconds (roughly 300m at the equator).  

3. RESULTS  620 

Using our core data sets as described above (MERIT, GHS-POP, and GHS-SMOD), we find that for 2015, 815 million 

persons globally live in the ≤10m LECZ, with nearly 300 million of those persons living in the higher risk ≤5m zone. 

About 60% of the population of the LECZ live in locations classified as urban and another 24% live in quasi-urban 

areas. Outside the LECZ, by way of contrast, the population is only 45% urban, while the share that is quasi-urban is 

comparable to in the LECZ, at 25%. The finding that the LECZ is disproportionately urban is robust across all data 625 

combinations of input data, as shown in Table 5 and the Figures 8-15 below; however, the range of these estimates 

vary substantially by the choice of data sets. Thus, in the following sensitivity analysis, we aim to understand the 

differences in these estimates, highlighting areas of agreement as well as divergence, and to draw out the implications 

where possible. (the full range of global estimates by elevation source, population source, and urban proxy are 

available as summary tables with the data download).  630 

 

Table 5. Summary of estimates of the global population in the LECZ, by LECZ and urban-rural classes. Core data sets (2015) 

shown with the range of estimates from other data sets given parenthetically. 

 

Urban-Rural Classification: Population Counts (in millions), with 

shares in italics  

Elevation Urban % Quasi-Urban % Rural % Total 

In LECZ (≤10m) 487 60% 198 24% 130 16% 815 

 (220-714)  (116-376)  (92-434)  (750-1056) 

≤5m LECZ 150 50% 85 28% 64 21% 299 

 (55-488)  (55-236)  (45-294)  (276-691) 

5-10m LECZ 337 65% 113 22% 66 13% 517 

 (94-360)  (53-175)  (43-171)  (301-517) 

Out of LECZ 2,959 45% 1,651 25% 1,923 29% 6,533 

 (1,014-3,423)  (692-2,670)  (1,259-4,587)  (6,233-6,596) 

Total 3,446 47% 1,849 25% 2,053 28% 7,348 

 (1,322-3,950)  (851-2,962)  (1,376-4,944)  (7,280-7,348) 
 

In the discussion that follows, we first review the results for data sets within a given domain (elevation, population, 

urban) but then use only the core data set when adding dimensions. Results with full permutations are found in the 

supplement materials.  635 
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3.1 Comparing population and land area estimates of LECZ with different Elevation data sets   

3.1.1 Land area estimates by LECZ and Elevation Source 

Figure 8 shows that for the ≤5m LECZ, CoastalDEM assigns the highest proportion of land area, and almost a third 

more land, than MERIT, SRTM, and TanDEM-X. In the 5-10m LECZ CoastalDEM, SRTM and TanDEM-X all assign 

the same proportion (0.83) of land area, whereas MERIT allocates almost a quarter more (1.02). As a whole, 640 

CoastalDEM estimates the highest total land area falling within the ≤10m LECZ, followed by MERIT, SRTM and 

TanDEM-X.  

 
Figure 8. Proportion of total land area in the ≤5m and 5-10m LECZ, by different elevation sources. 

3.1.2 Population estimates by LECZ and Elevation Source 645 

 

Estimates for the global population residing in the LECZ, by different elevation and population data sources, are 

shown in Fig 9. for 2015 and appendix Fig. B11 for 1990. The shares of population residing in either the ≤5m LECZ 

or the 5-10m LECZ have increased somewhat in the past 25 years, irrespective of which elevation data source is used 

to estimate the LECZ or which population estimates are used (only GPW and GHS-POP have estimates for 1990). 650 

Depending on the data sources, an additional .25 to .49 percent of the world’s population was living in the ≤10m 

LECZ in 2015 than in 1990, which equates to ~200,000 – 400,000 more people.  
 

Figure 9 shows the impact of population data choice on estimating the percentage of people living in LECZs globally 

in 2015. The relationship is clear to discern in the 5-10m LECZ, where GPW consistently estimates the lowest 655 

percentage, WorldPop the second lowest, LandScan the third lowest, and GHS-POP the highest percentage regardless 

of the elevation source used to define the LECZ. 
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Figure 9. Estimates of Population in different LECZ zones, by elevation and population data sources, 2015.  

 660 

Based on Fig. 9, it is clear that the selection of an elevation source has a greater impact on the estimation of population 

(and land area) in the zones than the selection of a population data source itself. The largest difference (in percentage 

points) between population sources is for areas outside the LECZ: using CoastalDEM for elevation there is 1.3% 

difference between LandScan and GPW. This is the largest difference in the percentage of population estimated in or 

outside the LECZ within any single elevation data source. The combined largest difference across all categories of 665 

elevation and population is 5.7% when comparing CoastalDEM and TanDEM-X in the ≤5m LECZ, where TanDEM-

X estimates 3.8% using GHS-POP, and CoastalDEM estimates 9.5% using LandScan. Nevertheless, the selection of 

a population data source on its own is significant when considering that a difference of even 1% globally between 

sources amounts to approximately 80 million people in 2015. Also, since these differences in LECZ shares are not 

uniform, within some local areas the selection for population data may have considerably more impact. 670 

3.1.3 What is driving the differences? 

 

Considering only GHS-POP 2015 population estimates (without stratifying the urban-rural continuum), by using 

CoastalDEM, we estimate that 687 million people live in the ≤5m LECZ globally, whereas when the other data sets 

are used we estimate far fewer – 299 million with MERIT, 346 million with SRTM, and 276 million with TanDEM-675 

X – people live in that same zone. Why is there such a large discrepancy? First and foremost, as indicated in Table 8, 

the land area is about 40% more in CoastalDEM ≤5m LECZ than in the others. 
 

Looking at the end members of this range of estimates (CoastalDEM on the high end, and TanDEM-X on the low 

end), roughly 80% of the population difference can be found across 11 countries (China, India, Bangladesh, Indonesia, 680 

Viet Nam, Japan, Philippines, Egypt, Thailand, United States of America, Brazil), and more than 30% of this 
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difference occurs in a single country, China, where CoastalDEM predicts approximately 184 million people in the 

≤5m LECZ, and TanDEM-X predicts approximately 54 million. A closer inspection of the elevation data sets sheds 

light on how these two data sets vary in their detection of low-lying areas.  
 685 

 
Figure 10. Comparison of coastal contiguity in China for CoastalDEM and TanDEM-X elevation sources. Basemap from 

Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, 

IGP, swisstopo, and the GIS User Community. 
 690 

Figure 10 shows differences in the evaluation of coastal contiguity. In the right hand panel, the CoastalDEM elevation 

data source extends inland up the Yangtze River which leads to identification of low-lying areas near Hefei and 

Nanchang which are not considered contiguous to coastline according to TanDEM-X (or MERIT/SRTM). Figure 10 

also shows in the left hand panel an area near Rugao, China, where a portion of the low lying area is not included in 

the final ≤5m LECZ based on TanDEM-X because it is not contiguous to the coastline owing only to the fact that it is 695 

cut off by a roadway.  
 

CoastalDEM sets all grid cells over water to an elevation of zero, therefore when we evaluate coastal contiguity the 

banks of rivers and tributaries are more often captured than with other data products which have variable elevation 

values over inland water. This partly explains why more inland areas are captured within the LECZ by CoastalDEM 700 

than the other sources. The LECZ based on TanDEM-X produces the smallest estimates of population. Unlike the 

other elevation data, it detects roads (notably found at higher density in urban settings), and classifies them as being 

at higher elevation than their surroundings as shown in Fig. 10 above (and it is overall more sensitive to built-structures 

and other elements of the landscape than the other elevation data sources). This is especially relevant when 

constructing LECZs because in the evaluation of coastal contiguity, we require direct connectivity to the coastline. 705 

Because TanDEM-X classifies roads (and other features) at higher elevation than their surroundings, it effectively 

creates contiguity barriers and thus smaller ≤5m and ≤10m LECZ zones. Similar phenomena are observed when 

considering MERIT or SRTM, namely that raw elevation estimates in these sources sometimes produce barriers which 

prevent coastal contiguity. (Whether these barriers indeed function as higher-elevation impediments to flooding is an 

open question that local studies may be able to address (Orton et al., 2015, 2020)). The CoastalDEM model produces 710 

a more homogenous surface which therefore expands the zone of contiguity to the coast which increases the land area 

and population estimates within the zone (See appendix Fig. B2).  

3.2 Comparing population and land area estimates with different Urban Proxy data sets  

3.2.1 Land estimates by Urban Classes 

Before evaluating the population in the LECZ along the urban-rural continuum, it is helpful to see how the different 715 

urban proxy data sets differ in their estimation of land area. Table 6 shows estimates of land area for the years 2000 

(so that the comparison to GRUMP can be made) and 2015. The GRUMP data, sometimes criticized for the blooming 

quality inherited from use of the stable city lights as a key input (Da Costa et al., 2017), can be taken to combine the 

urban and quasi-urban categories into urban only, at least when comparing with urban and quasi-urban data not based 

on city lights. Combining  urban and quasi-urban, for year 2000, the results according to dLIGHT are the most 720 

inclusive (5.3%) estimates of global land area, followed by GRUMP (2.9%), then GHS-BUILT (1.6%), and finally 

GHS-SMOD (1.2%). The same general pattern is seen for the year 2015, when GRUMP is omitted; additionally, 

changes over time in total area and percentages are also detected. These different urban proxies produce somewhat 

different depictions of land area. However, we find fairly strong agreement in the land area estimated in the urban 
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class between GHS-BUILT and GHS-SMOD. This is not surprising because they share an important underlying data 725 

source (GHS-BUILT), but dLIGHT (like GRUMP before it) places more land area in both urban and quasi-urban 

classes which is also not surprising as both GRUMP, and dLIGHT are based on night-time lights which have known 

blooming effects.  
 

Table 6. Land area of urban, quasi-urban and rural by urban proxy data sets. 

Year Urban Proxy Data Set 

Urban-Rural Classes, Area (in 1000 km2) and (%) 

Urban Quasi-Urban Rural 

Area % Area % Area % 
 

 Globally (all land area) 

2000 

dLIGHT 1,430 (1.1) 5,427 (4.2) 123,184 (94.7) 

GHS-BUILT 482 (0.4) 1,591 (1.2) 127,862 (98.4) 

GHS-SMOD 512 (0.4) 1,100 (0.8) 128,429 (98.4) 

GRUMP 3,766 (2.9)   126,265 (97.1) 

2015 

dLIGHT 2,038 (1.6) 6,313 (4.9) 121,690 (93.6) 

GHS-BUILT 568 (0.4) 2,013 (1.5) 127,355 (98.1) 

GHS-SMOD 639 (0.5) 1,270 (1.0) 128,131 (98.5) 
 

 LECZ (0-10m) only, MERIT-DEM 

2015 

dLIGHT 230 (8.4) 290 (10.6) 2,227 (81.1) 

GHS-BUILT 72 (2.6) 186 (6.8) 2,483 (90.6) 

GHS-SMOD 103 (3.8) 154 (5.6) 2,489 (90.6) 
 730 

3.2.2 Population estimates by Urban Classes 

 

The UN World Urbanization Prospects estimates that in 2018, 55% of the world's population lives in urban areas 

(United Nations, 2018), and whether this estimate is accurate or not (Cohen, 2004) it remains the established 

benchmark of urban population statistics. Since the UN’s estimate is derived from collections of country-specific 735 

urban measurements, the open questions are whether globally-consistent and spatially derived estimates are in fact 

more accurate, and whether or not these agree with the UN’s estimates? Without additional information, we cannot 

evaluate accuracy, but we can characterize whether or not there is agreement.  
 

Using these globally consistent urban proxy data sets, we show in Fig. 11 the proportion of the population that resides 740 

in urban, quasi-urban or rural settlements in 2015. The top panel of Fig. 11 shows the variation in the estimates by 

data source along this continuum. For any given population data set, the total population sums to 100% across the 

urban, quasi-urban and rural classes. In general, GHS-POP concentrates more people into urban and quasi-urban 

categories, no matter which urban proxy data set is used, and GPW concentrates more people into the rural category 

no matter which urban proxy is used. In terms of comparison to the UN estimates, whether the proportion of the 745 

population estimated to be urban shows agreement with the UN’s estimate depends both on which urban proxy and 

which population data set are used. GHS-POP and LandScan place at least 55% of the population (and sometimes, 

quite a bit more) in urban, and quasi-urban areas regardless of which urban proxy data is used, whereas WorldPop 

(except when using dLIGHT) and GPW place less than 55% of the population in urban and quasi-urban areas. Use of 

dLIGHT as an urban proxy data set leads to comparable or higher proportions of the population in urban and quasi-750 

urban areas across all population data sources. Importantly, none of the population data sources, irrespective of the 
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urban proxy data set, place 55% of the population in areas classified as urban only, suggesting that some of the official 

definitions are drawn from areas that have a more quasi-urban character (such as towns, suburbs, etc). Similarly, 

irrespective of the urban proxy data set, the percentage of the global population in urban and quasi-urban areas has 

grown substantially since 1990 (see Fig. B12).  755 

 

Perhaps it is not surprising that estimates of population in rural areas vary more than those in urban areas, because 

satellite data broadly agrees on the urban category due to its relatively consistent and identifiable morphology. Most 

notably, the ranges in rural areas are largest when using GHS-BUILT or GHS-SMOD. The ends of these ranges are 

GPW, which uses no modelling towards settlements (or other attributes), and GHS-POP, in which the population 760 

reallocation is dominated by settlements (but not other ancillary features). Additionally, GHS-BUILT produces the 

widest range of population estimates across the three urban classes; in other words, the GHS-BUILT urban proxy is 

highly sensitive to the choice of population data.  
  

 765 
Figure 11. Percent of total population, by urban-rural classes, using different urban proxy and population data sources, 

globally and in the ≤10m LECZ (using MERIT DEM) 2015. 

3.2.3 Population estimates by Urban Classes in LECZs 

 

In comparison to the global distribution, the lower panel of Fig. 11 identifies the population distributions along the 770 

urban-rural continuum in the ≤10m LECZ (using MERIT): the denominator in this panel is the total population in the 

LECZ. It is clear that the population is more concentrated in urban areas in the ≤10m LECZ than globally. For instance, 

using GHS-SMOD as the urban proxy and GHS-POP population data, less than half – 47% of global population – 

reside in the urban class, in contrast to in the ≤10m LECZ, where 60% of the population live in urban areas. Similarly, 

the population of LECZ is less rural than the global average. Indeed, compared to the global figures, the urban 775 

population shares in the ≤10m LECZ are higher and the rural shares lower for all combinations of population and 

urban proxy data sets  (and for all the elevation data sources, as shown in the summary tables available with the data 

download). However, the quasi-urban population shares are sometimes higher and sometimes lower in the ≤10m 

LECZ than globally depending on which population and urban proxy is used. For each of the urban proxies, the 

estimates of the quasi-urban shares based on the different population data sets are closer to each other within the ≤10m 780 

LECZ, though the ordering remains the same as global, with GHS-POP having the highest quasi-urban share, and 

GPW the lowest (as for urban).   
 

Comparing the upper and lower panels of Fig. 11, it is clear that the range of estimates of the population share for 

each urban class is narrower in the LECZ than the respective global ranges. This is likely because the LECZ is itself 785 

more urban, and urban areas are where the resolution of the underlying census data is finest. (See appendix A1 for a 
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discussion of the role of underlying resolution on the population.) Similarly, all of the urban proxies show less 

sensitivity to the choice of population data set within the LECZ than they do globally, and both GHS-SMOD and 

dLIGHT show the least sensitivity in the quasi-urban class both inside the LECZ and globally. Notably, as shown in 

the lower panel of Fig. B12, the same patterns held in 1990, when the combined urban and quasi-urban population 790 

shares in the LECZ exceeded 50% (for all combinations of data sets except one). Whether population shares in the 

urban and quasi-urban areas of the LECZ have increased more than those shares globally is a question we address 

below.  
 

Taking a closer look at the distribution of population within the LECZ, the pie charts in Fig. 12a, shown using only 795 

MERIT and GHS-SMOD, reveal some other interesting patterns (including information necessary to understanding 

the fractions of the population in the LECZ, and their associated densities.) (1) The population data sets vary in the 

total number of persons estimated to reside in the LECZ. GHS-POP places the greatest number of persons in the LECZ 

(815 million), and GPW the least (781 million), a difference of 35 million persons.  (2) Despite differences in the 

shares of the population estimated to live in the different urban classes (also shown in Fig. 11), the ratios of population 800 

living under 5 to that living in the 5-10m is relatively consistent across population data sets, with notably greater 

fractions of the urban population in the LECZ living in the 5-10m zone. (3) Consistent with much different land areas 

(Table 6), the urban proxy data sets (shown in appendix Fig. B3) reveal different distributions of population in the 

LECZ. 

 805 

 
Figure 12a. Proportion of the population in each urban class (urban, quasi-urban and rural) in the  ≤5m and 5-10m LECZ, 

for different Population data sets, 2015. Shown using GHS-SMOD as the urban proxy and  MERIT for LECZ delineation.) 

Labels indicating population count (in 000s) are shown. 
 810 

Given the comparably high shares of urban population in the LECZ, Fig. 12b shows the urban (or quasi-urban, or 

rural, respectively) population that resides in the ≤10m LECZ as a proportion of the global total in each respective 

urban-rural class (using MERIT, and GHS-SMOD with full results shown in appendix Fig. B3).  Even though GPW 

estimates the smallest population in the LECZ, and the smallest urban population both globally and in the LECZ, it 

estimates the highest proportion of total urban population in the ≤10m LECZ: nearly 1 out of every 5 urban dwellers 815 

live in a city in the LECZ. This pattern holds no matter which urban proxy data set is used. In contrast, GHS-POP 

estimates the largest population in the LECZ, and the largest urban fractions globally, but as shown in Fig. 12b, places 

only 1 out of every 7 urban dwellers in the LECZ. Smaller proportions of the global rural and quasi-urban populations 

live in the LECZ, but particularly notable is that of the rural population in LECZ, roughly half live in the higher risk 

≤5m zone. 820 
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Figure 12b. Proportion of  population in each urban class (urban, quasi-urban and rural) in the ≤5m and 5-10m LECZ, by 

each respective urban-rural class, according to different Population and Urban Proxy  data sets, 2015. (MERIT is used for 

LECZ delineation.) 825 

3.2.4 What is driving the differences? 

 

Differences in the estimates of population – especially within classes along an urban-rural continuum – between urban 

proxy data sets are largely driven by four factors: (1) the selection of population data source; (2) the underlying satellite 

data measure and its associated urban construct; (3) the resolution of the underlying sensor; and (4) the thresholds 830 

used in the construction of urban classes: choices we have imposed for GHS-BUILT and dLIGHT, and the choice to 

use JRC’s GHS-SMOD level 1 classification (which the user community at large can continue to evaluate and revise.) 

A fifth consideration that interacts with these factors relates to the underlying and intrinsic resolution of population 

data in urban areas, an issue that becomes more significant when considering the LECZ because it is disproportionately 

urban.  835 

 

As described in Sect. 2.2, the key differences between the population data sources arise from how they allocate 

population within census based geographic units. GPW distributes population uniformly within these areas, without 

taking any account of indications that the land is urban (e.g. built-up) or rural (e.g. forested).  GHS-POP distributes 

the same populations on the basis of built structures, in effect concentrating the population in those areas more likely 840 

to be classified as urban or quasi-urban. WorldPop also distributes the same population using different indicators, and 

also likely to concentrate population in more urban locations. LandScan builds on somewhat different sources for its 

initial population inputs and uses a somewhat different model to distribute the population, but is also designed to 

distribute more population to land with more urban characteristics. In densely-populated urban areas where the 

underlying census units tend to be more finely resolved (even in data poor settings), there is likely to be the greatest 845 

agreement between the urban, quasi-urban and rural population estimates across the population data sources (this is 

explained in more detail in appendix A1.) Where there are differences, one would expect GPW population counts to 

be more rural than the others. The global statistics presented above conform with this expectation. So do those for the 

≤10m LECZ, though the differences between the population sources are less, which is probably explained by higher 

overall densities and higher input resolution in coastal areas. All the population data sources estimate that the share of 850 

global urban populations located in the ≤10m LECZ (using MERIT) is higher than the share of global quasi-urban 

population, which is in turn higher than the share of global rural population. However, GPW has the highest shares of 

the urban and quasi-urban populations in the ≤10m LECZ, as to be expected given its particularly low urban and quasi-

urban populations outside of the zone.  
 855 

The urban proxy data sets determine which areas are classified as urban, quasi-urban and rural, using different 

indicators, as well as cut-off points between the classes that are inherently somewhat arbitrary, and help determine the 

share of land in each class. GHS-BUILT uses a physical (built settlements) model, GHS-SMOD expands it by also 

using population density, whereas dLIGHT and GRUMP use the detection of night-time lights which combine 

physical, atmospheric and environmental factors. In terms of application to urban locations, areas that are built are 860 

almost always included in the night-lights based products. One of the reasons that the lights-based products are more 
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inclusive is because they contain land-uses that are not built structures but which may be lit (urban parks, roads, etc... 
Stokes and Seto, 2019), and that the lights ‘bloom’ beyond the area where the actual light originates (Small et al., 

2005), and while the resolution of the data underlying dLIGHT are much higher and thus reduce concern, this concern 

persists. While many user communities prefer the more spatially delimited built-construct, others (notably ecologists) 865 

prefer lights-based extent because its more expansive nature is better suited to the study of ecosystems, capturing the 

dynamics of land fragmentation (McDonald et al., 2011).  
 

The input horizontal resolution of GHS-BUILT is highly refined at 9 arc second, whereas dLIGHT has a native 

resolution of 15 arc second, and GRUMP of 30 arc second. The resolution of GHS-SMOD is also 30 arc second, but 870 

it is constructed from higher resolution (9 arc second) input data. These differences in resolution impact the 

classification of areas into urban, quasi-urban and rural since data which originated from a coarser scale is likely to be 

more inclusive. For example, on the edges of the urban class there are often transitions to quasi-urban which are clearly 

captured when using high resolution data, but are combined into the urban class at lower resolutions until greater than 

50% of a pixel is captured as quasi-urban. 875 

 

The selection of thresholds that we used for the GHS-BUILT and dLIGHT data sets (as well as the use of GHS-SMOD 

level 1 classification) is another important factor contributing to the variation in land area estimated to be in each 

class. The determination of any critical values to differentiate settlement types is somewhat subjective, as evidenced 

by the wide range of country definitions of settlement types utilized in global censuses (United Nations, 2018). We 880 

applied thresholds here based on a limited number of other studies that have evaluated the impact of thresholds on 

detection (Leyk et al., 2018; Balk et al., 2018; Tong et al., 2018). GHS-SMOD is a fairly new data product as well 

that continues to make improvements to its model, in particular on the rules used to create the different urban classes; 

such as whether to apply a given built-up threshold or not. (Early work applied a 3% threshold, the latest and stable 

release removes this threshold.) Future work should help to evaluate the usefulness, and sensitivity, of these and other 885 

thresholds.  
 

Because estimates of land area differ in the LECZ by urban proxy  data set (as well as elevation), the last result section 

will evaluate differences in population (and built) density.  

3.3 Comparing built-up and population density estimates by urban proxy data sets 890 

This section turns from comparing population and land area estimates for different LECZ and urban-rural classes, to 

examining the related population densities and built-up area density estimates across these same classes. Population 

densities are simply the population counts divided by the land areas. Urban areas are associated with high population 

density, and indeed a high population density is often treated as a criteria to define urban areas (Solecki et al., 2015; 

Dijkstra et al., 2020). Having a high proportion of the land built-up is also sometimes treated as a defining feature of 895 

urban areas (Melchiorri et al., 2018; Wentz et al., 2014). Moreover, nighttime light is assumed to be associated with 

where human populations and built-up urban areas are located (Wentz et al., 2014; Henderson et al., 2012).   
 

Along  the urban-rural continuum, urban areas can be expected to be the most built-up, and rural areas the least: being 

built-up is part of how urban areas can be identified (as is fully the case with GHS-BUILT, and partially the case with 900 

GHS-SMOD), and being built-up is also generally associated with population density (used as one of several criteria 

to identify urban area in GHS-SMOD) and lit-up areas (used to identify urban areas with dLIGHT). While one would 

expect the relationship to be particularly close for the classification based on GHS-BUILT, where one would also 

expect it to depend on the thresholds (of the respective measure in each urban proxy data set) chosen, with particular 

thresholds resulting in smaller urban areas yielding higher urban built-up shares in those areas, and thresholds resulting 905 

in larger rural areas yielding higher rural built-up shares (and quasi-urban areas having higher built-up shares when 

urban areas are smaller and rural areas larger). Somewhat similar expectations apply to population density, though in 

this case the urban proxy data set most likely to pick out high density urban areas and low density rural areas is GHS-

SMOD because it uses population density as a criteria in the construction of the GHS-SMOD classes. Also, excessively 

tight thresholds could in principle reduce urban population densities, as city centres are often dominated by 910 

commercial property, exhibiting lower population densities (at least at night). 
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3.3.1 Built-up and population density by urban class and elevation 

Figure 13a shows the global, average built-up percentage for urban, quasi-urban and rural categories across the urban 

proxy data sets (i.e., this is the average concentration of built-up areas based on GHS-BUILT). GHS-BUILT is a 

measure of the proportion of any given pixel that is considered built-up. The urban class is on average, 53.86% built-915 

up according to GHS-SMOD data; according to the thresholded GHS-BUILT urban proxy, the urban class has higher 

concentration of built-up area, at 77.29%; and according to dLIGHT, which produces a more expansive urban area 

(see Table 6), the urban class has an average built-up percentage of only 22.55%. GHS-SMOD captures areas as rural 

which are a factor of twenty more built-up (0.21%) as compared to GHS-BUILT, which only includes the least built-

up of areas in the rural category (0.01%), and dLIGHT is in between (0.08%). 920 

 
Figure 13a. Built-up density of urban, quasi-urban and rural by different urban proxy data sets, 2015.  

 

Figure 13a can be compared to Fig. 13b, which shows the same classes, but by population rather than built-up densities, 

for each population data source (along the x-axis) and urban proxy data set (on the y-axis). The highest population 925 

densities are found, as expected, in urban areas; and these are several times those of quasi-urban areas, which are in 

turn several orders of magnitude greater than those in rural areas. This is similar to the built-up area differences, though 

for GHS-SMOD in particular the population density differences between urban and quasi-urban areas are greater than 

the differences in the proportion of area built-up. Within a given urban proxy data set, the estimate of population 

density depends largely on which population data set one uses – and these differences between population data sets 930 

are substantial. For example, using GHS-SMOD for our urban proxy data set, the population density in urban areas 

according to GPW is 2,942 persons/km2 whereas with GHS-POP it is 5,393 persons/km2. In contrast, within a 

population data set, the difference across the urban proxy data sets are largely comparable between GHS-SMOD and 

GHS-BUILT, but substantially smaller with dLIGHT. In short, and importantly, estimates of population density 

depend on one’s choice of both the urban proxy data set and the population data set.  935 
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Figure 13b. Population density of urban, quasi-urban and rural areas by urban proxy data sets (y-axis) and population 

data (x-axis).  

 

Whereas Fig. 13a and Fig. 13b show average global densities, in Fig. 14a and Fig. 14b, we separate out the LECZ 940 

classes. (For simplicity, we show the LECZ based on MERIT only, with the full comparison shown in the appendix 

Figures B4 and B5, noting that differences are small between elevation data sets.) While there are inherent 

relationships between both built-up share and population density and an area’s degree of urbanization (i.e., some of 

the urban proxy and population data sets), there are no equivalent relationships with elevation levels and the LECZ 

zones. Yet, given the disproportionately urban nature of the ≤10m LECZ, we expect to find a higher population and 945 

built-up densities in the LECZ than outside of it.   
 

Are urban and quasi-urban areas in the LECZ more built-up than areas outside of the LECZ? The answer in part 

depends on which urban proxy data set is used, and on differences within the zone itself. Fig. 14a shows that the ≤5m 

LECZ is less built-up than the 5-10m LECZ, with large differences when using GHS-SMOD or dLIGHT. Notably, 950 

the built-up percentages are greater in the 5-10m LECZ in all classes of the urban continuum than areas outside of the 

LECZ with the exception of GHS-SMOD, where urban areas in the 5-10m zone are quite similar in their built densities 

(53.5% vs. 55.3% outside the LECZ). GHS-BUILT produces built-up percentages that are almost invariant across the 

different LECZ zones.  
 955 
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Figure 14a. Built-up density (%) of urban, quasi-urban and rural areas by urban proxy data set, using MERIT elevation 

source. 

 

Like Fig. 14a, Fig. 14b asks how population density varies within the LECZ and compares to areas outside of the 960 

LECZ (results shown only for GHS-SMOD with other urban proxy data found in appendix Fig. B5). Population 

densities are lowest in the ≤5m LECZ, along the urban continuum (with the exception of GPW where population 

densities in the ≤5m zone are higher than outside of the LECZ). All of the population densities in the 5-10m LECZ 

are higher than those outside of the LECZ regardless of which population source is used. 

 965 
Figure 14b.  Population density of urban, quasi-urban and rural areas using GHS-SMOD, by LECZ (using MERIT), 

according to different population data sets,  2015. 
 

3.4 Change over time: Population growth in the LECZ along the Urban-Rural Continuum 
 970 

In 1990, according to GHS-POP and GHS-SMOD 570 million persons lived in the ≤10m LECZ; 25 years later, that 

population has grown by another 245 million persons. As Fig. 15 shows, while the population has grown everywhere 
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in the LECZ – that is, in urban, quasi-urban and rural areas – urban areas have experienced the greatest increases.  The 

share of the global urban population living in the LECZ has grown from 13% in 1990 to 14.2% in 2015, whereas the 

shares of the respective quasi-urban and rural areas have declined – presumably, in part because some areas that were 975 

classified as quasi-urban or rural in 1990 have transformed to urban during this period. Also notable is that the 

proportionate change in this 25 year period is greatest in the urban areas in the ≤5m LECZ (a pattern that holds across 

elevation data sets).  

 
Figure 15. Respective share of population in LECZ, by LECZ and urban-rural classes, 1990 and 2015. Core data sets used 980 
(Merit DEM for LECZ; GHS-SMOD for urban continuum classification and GHS-POP for population).  
 

Has the urban population in the LECZs grown more than the urban population overall? The answer to that is yes. 

Table 7 shows the shares of the respective urban, quasi-urban, or rural population living in the ≤10m LECZ in 1990 

and 2015, and their change over the 25 year period:  In 1990, 11.4% or the urban population  – one out of every urban 985 

7.7 person – lived in the LECZ; by 2015, 14.1% – one out of every 7.1 – urban person lived there, using GHS-POP, 

GHS-SMOD, and MERIT, whereas the percentage of the respective populations living in quasi-urban and rural areas 

has fallen in these 25 years. The population living in urban areas in the LECZ has grown considerably more – ranging 

from 67% increase to more than a doubling, depending on which data set one uses – than in urban areas outside the 

LECZ. While populations have grown in quasi-urban and rural areas, according to most data combinations – they have 990 

grown much less than in these areas outside the LECZ. While the levels of these shares differ somewhat across urban 

proxy and population data sets, the main message is unambiguously consistent: urban population has grown more in 

the LECZ than outside of it.  
 

 995 

 

 

 

Table 7. Estimates of the global population, and percentage change, in the LECZ, by urban-rural classes (based on 

different urban proxy and population data sets), 1990-2015. 

Urban/Rural Classification % Population Residing in <10m LECZ 
% change in Population in LECZ from 

1990-2015 

 

Urban Proxy 

Data 

2015 1990 <10m LECZ Outside LECZ 

Classification GHS-Pop GPW GHS-Pop GPW GHS-Pop GPW GHS-Pop GPW 

Urban dLIGHT 13.5% 17.5% 11.4% 14.0% 99.9% 104.3% 63.3% 57.4% 
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GHS-BUILT 13.7% 16.8% 13.0% 15.3% 67.3% 84.9% 57.2% 65.9% 

GHS-SMOD 14.1% 19.1% 13.0% 17.3% 74.9% 84.7% 58.7% 63.1% 

Quasi-Urban 

dLIGHT 8.2% 9.0% 12.4% 14.5% 0.8% -1.9% 59.7% 68.7% 

GHS-BUILT 10.3% 16.7% 10.7% 16.7% 29.8% 54.6% 35.5% 55.3% 

GHS-SMOD 10.7% 15.4% 11.5% 16.5% 16.1% 30.2% 26.1% 41.4% 

Rural 

dLIGHT 8.3% 6.8% 8.8% 7.2% -15.1% 14.3% -9.5% 20.8% 

GHS-BUILT 7.1% 7.7% 7.3% 8.0% 10.6% 24.5% 13.5% 29.6% 

GHS-SMOD 6.3% 6.3% 7.2% 6.9% 7.7% 18.0% 22.9% 30.1% 
Note: MERIT-DEM used as elevation data for LECZ. 

 

4. FITNESS FOR USE & DIRECTIONS FOR FUTURE RESEARCH 1000 

When modelling three different phenomena, all imperfectly, and then combining them, it is prudent to reflect on 

limitations (e.g., accuracy or uncertainty) and future usages of these data, including many that go well beyond what 

we’ve described in this analysis. Following the example found in a recent review of global population grids (Leyk et 

al. 2019), here we pose some questions that users of the data sets produced herein may use in order to describe fitness 

for, and possible limitations, in use. As we have made evident above, it is important to get under the hood of any given 1005 

data set to understand what data went into its construction along with important modelling assumptions.  
 

Importantly, estimates of population in the LECZ, along an urban continuum, are sensitive to the choice of data sets. 

For some uses, it will be important to be explicit about how sensitive conclusions or recommendations are to the 

choice of data sets, and results from multiple sets should be combined to provide the needed sensitivity analysis. There 1010 

are, however, significant disadvantages in having to manipulate and present the results of multiple data sets, and there 

will be times when it is more appropriate to select only one population data set, one urban-rural data set and one 

elevation data set. In either case, it is important to recognize the strengths and weaknesses of the different data sets, 

and not simply to pick the ones that support favoured recommendations or conclusions. Some of the questions whose 

answers may help determine both which and how many data sets are appropriate to particular uses are discussed below. 1015 

 

4.1 How does spatial resolution impact your analysis? Both horizontal and vertical resolutions are of utmost 

importance when trying to characterize at-risk populations in LECZs. Vertical resolution and corresponding 

uncertainties of elevation data sets (measured by RMSE etc.) vary by location and land cover type, and therefore must 

be examined carefully when used in local or regional scale studies. If local elevation data (e.g. LiDAR) is not available, 1020 

then users should consider evaluating multiple global DEMs to identify areas of disagreement and related 

uncertainties. Particular small and dynamic geographies are more susceptible to misrepresentation arising from 

vertical and horizontal resolution issues, and co-registration of overlaying data sets. This is especially important for 

small islands geographies in global data products (Taupo et al., 2018; Taupo and Noy, 2016; Yamano et al., 2007; 

Lewis, 1989), for deltatic geographies where subsidence may be occurring at higher rates than previously thought 1025 

(Minderhoud et al., 2018), and in urban areas where  building heights may impact the accuracy of elevation 

measurements (Pesaresi et al., 2021).  
 

Although the horizontal resolution (e.g., cell size) of global elevation data is generally uniform at approximately 100m 

(nominally at the equator), when combining with other data users must account for integration complexity. The 1030 

population and urban proxy data sets used in this study include a range of horizontal resolutions from 100m to 1km 

(nominally at the equator), and 2019). However, simply selecting the finest resolution data does not imply greater 

accuracy, since fine resolution disaggregation depends on models which themselves are uncertain based on their inputs 

and modeling approach. Aggregating all data layers to a common  coarser scale can reduce uncertainties in the 

population estimation, but at the cost of also reducing the resolution of elevation models (which causes information 1035 

loss.)  
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In this study, we selected 3 arc seconds as the common horizontal resolution, which is coarser than the native 1 arc 

second resolution of global DEMs. This choice has the advantage of smoother coastal contiguity surfaces in producing 

LECZs, and harmonization to the full GHSL time series, but the disadvantage of not using the source resolution present 1040 

in global DEMs. The choice of which population data set to use depends in part on the type of area being studied. In 

general, we expected and found convergence of population estimates in larger urban areas. This is explained by the 

fact that underlying census geographies (ie., administrative boundaries) are usually the smallest in large urban areas, 

which therefore reduces the need for complex allocation models.  Users interested in largely rural or quasi-urban 

localities would be advised to compare among the population and urban proxy data sets since the models are more 1045 

likely to diverge, as well as to utilize any local data available.  
 

4.2 Can these data be used to observe changes over time?  If comparability over time is important to your analysis, 

some combinations of these data may be objectively better than others. To be clear, all the elevation data used to 

produce the LECZs represent only one time point (circa 2000 for the SRTM based measures, or 2015 for TanDEM-1050 

X). It is an open question as to what the ideal observation period is for identifying changes in elevation, which is the 

main data set used here to delineate LECZs. Future climate change is likely to shorten the periodicity for which we 

want such observations collected and made available in a regular way, like national censuses. Yet there is no 

international or collection of national organizations with this mandate at present (the TanDEM-X website describes 

plans by the German Space Agency to reacquire elevation data as of 2019 and produce a “Change DEM”, but as of 1055 

present that data is not available for analysis).  
 

Some population and the urban proxy data sets use multiple points in time, but users must exercise caution when using 

them as if they were a spatially-precise time series. The LandScan population data specifically advises users to not 

consider annual estimates as a comparable time series since they are based on different methodologies (Rose and 1060 

Bright, 2014). GPW and WorldPop produce population estimates for multiple points in time using subnational growth 

rates (at the finest scale those data are available and applied to the full resolution), but their underlying spatial structure 

is based on 2010 round census geographies. GHS-POP also utilizes those same 2010 geographies, but is modeled 

using built-up estimates unique to each epoch, which therefore varies the spatial structure of estimates over time. Of 

the urban proxy data, GRUMP is from a single temporal range (circa 1995), but dLIGHT (1992, 2002, 2013), GHS-1065 

SMOD (1975, 1990, 2000, 2015), and thresholded GHS-BUILT (1975, 1990, 2000, 2015) are all variable over time. 
 

4.3 How important is transparency in underlying assumptions of source data sets? With the promulgation of 

more elevation, population, and urban proxy data sets, users must consider how to meaningfully combine these data 

to characterize population and land area estimates in the LECZ, and be aware of the interdependence of their choices. 1070 

Transparency in the underlying methodologies of these data is important in order to avoid confirmation bias (or what 

has been termed policy-based evidence) in the pursuit of better decision making (through evidence-based policy). The 

producers of data used in this analysis are transparent in that they have published peer-reviewed articles on their data 

sets, however, some of the assumptions made in the process are obscured to end users or non-experts.  
 1075 

Above we have reviewed the relevant modelling methods and ancillary data inputs to produce the various data sets, 

here we will address issues as they relate to use when being combined. Models are used because the underlying data 

are inadequate to some degree for the purpose at hand. Yet, many of the modelled data sets in all three areas 

(population, urban proxy and elevation) are endogenous to some degree. Models depend not only on use of inputs – 

some of which could produce circular reasoning in results (as addressed above) but also on assumptions of how to 1080 

model the constructs at hand. Those assumptions should be understood by downstream users of data products as well, 

but are often left implicit.  
 

For instance, the CoastalDEM elevation surface is the only elevation data set among the four here that uses information 

other than elevation in its model: among many data sets, it uses LandScan population data as an explanatory variable 1085 

to predict elevations (Kulp and Strauss, 2018). This makes population partially endogenous to the CoastalDEM 

elevation surface, and treating the resulting elevation data as explaining the spatial distribution of population risks 

circularities, as the model used to help estimate CoastalDEM elevations already contained population as an 

explanatory variable.  
 1090 

Of the population data sets, GPW is the only one that does not use covariate layers in its population model and GHS-

POP only uses GHS-BUILT. WorldPop uses SRTM Elevation data, GHS-BUILT, and VIIRS Nighttime Lights 
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(although they are stronger predictors in certain countries than others) to delineate a population surface, which creates 

a similar endogeneity problem to that of CoastalDEM and LandScan. LandScan’s list of covariate layers are not 

publicly documented. Although GPW avoids any endogeneity problems, the uniform allocation results in a higher 1095 

share of population allocated to rural areas. GHS-POP uses only one covariate layer, GHS-BUILT, which leads to a 

higher share of population in urban areas, and also endogeneity when being used with the urban proxy data layers also 

rendered from GHSL products. Since only one covariate layer is used, the potential for bias is more transparent than 

when highly complex or unspecified models are used. The reason that more complex population distribution models 

are used is to provide more precise estimates at the pixel level, but this comes at the cost of introducing unrecognised 1100 

or poorly understood endogeneity problems. Users must see these endogeneity vs. precision concerns as trade-offs 

and consider the nuances when selecting which data to use. Transparency is vital in supporting reasoned decisions in 

that regard.  
 

Of the urban proxy data used in this study, all of the data sets are based on varying assumptions on how to best 1105 

represent urban areas along a continuum – which we simplified to three categories of urban, quasi-urban, or rural (as 

described in Table 4). It is an open question as to whether such renderings require data representing both the population 

and land perspective of urban areas, in part because there is no agreement on what defines an urban center or 

settlement. If one adopts a demographic perspective and treats population concentration as the  the defining feature of 

urban areas, this relationship between population concentration and areas identified as urban is not an endogeneity 1110 

problem but an explicit assumption, though there is still the risk that the spatial population data sets may, for example, 

overestimate population concentration on built-up land, and lead to the misspecification of just how urban areas are. 

In contrast if one adopts a (physical) geographic perspective  and treats built-up land use as the defining feature of 

urban areas, then the same tendency to overestimate population concentration on built-up land would not create errors 

of urban misspecification, but of misrepresentation of the relationship between population concentration and the 1115 

degree to which the land was urban.   
 

Of the data sets we use here, two use both population and settlement proxies together (GHS-SMOD and GRUMP), 

but no other inputs (unlike the complex population models), and two are based on just the physical urban footprints – 

built-up or lights. But regardless, in order to generate urban proxies, some sets of thresholds and other rules were 1120 

applied to construct the three classes here. GHS-SMOD and GRUMP are complex data integration projects that 

downstream users cannot easily reimplement but GHS-BUILT and dLIGHT, which do not include population-based 

criteria, are easy for spatial data users to use as they wish. The selection of use-appropriate thresholds and more 

complex criteria for dLIGHT and GHS-BUILT data (as alternatives to what we have done here) is something which 

users may wish to do in order  to more fully optimize use of those data. Moreover, the assumptions across all of the 1125 

urban proxy data used here are global assumptions, whereas there is strong reason to believe that locally-adaptive 

models (by levels of economic development, biome, or other characteristics) could produce more precise and 

optimized results. Users should experiment in this regard whenever possible depending on their use case and study 

area. 
 1130 

The sensitivity analysis here shows a consistent relationship between GPW and GHS-POP forming the end members 

of the array of possible populations both within and outside of the LECZ, with GPW dispersing population uniformly 

on the low end resulting in a larger rural share, and GHS-POP concentrating population into built-up areas on the high 

end resulting in larger urban shares. Where the underlying census data are at high resolution (typically, at 

administrative level four, five, or six, but this depends on the geographic size of the country), we found high agreement 1135 

across population data products in areas classified as urban, and across elevation data sets. While much effort has gone 

in improving the resolution at which census data is collected and made available (United Nations, 2014), as more 

censuses implement and distribute high-resolution data (e.g., for enumeration areas or settlement points) the need for 

modelling will dissipate (or be needed only in special use-cases, like remote areas); this is relevant for the spatial 

distribution of both population and urban areas (Champion and Hugo, 2004). To the extent that the research 1140 

community engages with national statistical offices, reiteration of this need remains a priority.  
 

Similarly, future versions of GHS-BUILT that distinguish between industrial and other types of structures will be an 

improvement for those using these data (or derived products like GHS-POP and GHS-SMOD) to distribute population 

spatially, and to identify urban areas. Particularly if nighttime population concentration (as is the construct for all 1145 

population data sets here except LandScan) is meant to be an independent indicator of an area being urban, alongside 

being built-up (as intended in GHS-SMOD), it would represent an important improvement to avoid population 
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allocation procedures that shift population to non-residential built-up areas. It could also improve estimates of 

nighttime coastal population to avoid non-residential port development, for example, from being implicitly assumed 

to be residential, and having populations allocated to them. 1150 

 

4.4 How important is the accessibility of the data sets to other potential users? A separate but related issue to that 

of transparency is whether or not one's analysis requires data that can be accessed by others or whether it has large 

user-restrictions or fees (since for publicly available data, unrestricted use is part of transparency in that they foster 

replication and comparison). We make all of our results publicly available in tabular form. However, as discussed 1155 

above, we can only redistribute our spatial data layer for the LECZ based on MERIT, as the other sources have 

restrictions on redistribution. Apart from whether a data set can be redistributed, some data sets are freely available 

and others have fees. TanDEM-X and Coastal-DEM among the elevation data sets, and LandScan among the 

population data sets, are freely available for research usages, but not other commercial or operational ones. All of the 

data sets used here as urban proxies are publicly available. Creative Common and Open Database Licenses are 1160 

increasingly used, and previously for-fee and restricted data sets are becoming more open, thus users are encouraged 

to check with data providers for updates.  
 

4.5 How important is consistency with international, national or disciplinary norms and usage? Much progress 

has been made in the past two decades in the spatial rendering of population, urban locations, and elevation by a global 1165 

community of researchers. That has been accompanied by a critical lens of usage and discussion among data producers, 

notably among the population data producers (Leyk et al., 2019). The coupling of population and land-use based data 

to describe urban location and population is the most novel of the three data types we use here and therefore the one 

requiring the most scrutiny. Importantly, only GHS-SMOD and GRUMP explicitly aim to locate urban areas and both 

of these depart from the long-accepted, aspatial standard by which global estimates of urban population are estimated 1170 

(United Nations, 2018).  
 

As the goal here is to create globally coherent data sets, international comparability is critical. For local uses, there 

will often be more relevant and/or accurate data, including on the elevations needed to identify the LECZ, the spatial 

distribution of population and built-up land, and the locations of more or less urban areas. Until recently, as indicated 1175 

above, international data on urban populations have been based on national definitions of urban area, which vary 

widely, even if they tend to coincide with more densely populated and built-up areas, more likely to contain the sort 

of structures, infrastructures and institutions that planners and others associate with urban settlements. For this report, 

we have used more internationally comparable methods of identifying the urban-rural continuum. As noted above, 

one of these - GHS-SMOD - has been recognised by the United Nations Statistical Commission (UNSC, 2020) as a 1180 

means of helping countries identify the degrees to which areas are urban, and thus to provide a valuable complement 

to or even eventually input to international urban population series based on national definitions. It is to be expected, 

however, that appropriate data choice will continue to depend not only on disciplinary and national norms, but on the 

relative priority given to international comparability versus local relevance, and to consistency with the ever expanding 

and improving data sets from sources such as satellite imagery and other evolving technologies. Using a refined 1185 

measure of urban locations rather than a simple dichotomy is important given that the bulk of future population growth 

will take place predominantly in the cities and towns of Asia, Africa and Latin America, and thus understanding cities 

of different sizes, their characteristics and relationships to one another, is increasingly important and these new data 

and methods make it easier to do so (Dorélien et al., 2013; Tacoli, 1998; Menashe-Oren and Bocquier, 2021). Thus, 

understanding what data and criteria are used to construct a continuum of urban classes is only likely to gain in 1190 

relevance. How any given user chooses or not to specify a continuum will depend on a given usage.   
 

Since the construction of the first LECZ (McGranahan et al., 2007), others have adopted the basic methodology to 

create improved data for more local areas (Reimann et al., 2018; Vafeidis et al., 2019; Hauer et al., 2020), as a basis 

for forecasting future exposure (Reimann et al., 2018; Neumann et al., 2015), and at finer elevation bands(Lichter et 1195 

al., 2010)). But the international norms and data available to model coastal flooding and sea level rise are presently 

emerging (Nicholls et al., 2021; Muis et al., 2020; Tellman et al., 2020; Vafeidis et al., 2019; Haigh et al., 2020; Kopp 

et al., 2015; Tebaldi et al., 2012), and to date mostly depend on local data.   
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5. DATA AVAILABILITY 1200 

Only some of the underlying data sets used here are licensed for derivation and redistribution. Links in Tables 1-3 

point to the data originator. Here we disseminate:  
 Table of results as indicated (population and land area in LECZ by urban-rural classes, by all elevation, 

population and urban proxy data sets), by country, continent and year.  

 A spatial layer of 0-5m and 5-10m LECZs based on MERIT at 300m horizontal resolution in the WGS84 1205 

coordinate system. 
This is a preliminary open data release, pending peer review of the data and associated journal articles. Following the 

peer review process, data curation will be completed by the NASA Socioeconomic Data and Applications Center 

(SEDAC) and the data will be disseminated through the SEDAC catalog. 

6. CODE AVAILABILITY 1210 

Many of the techniques we use here to generate estimates of populations by elevation, population source, and along 

the urban continuum leverage well-known workflows and geoprocessing tools. The code provided here focuses on the 

novel aspect of the work, namely how to produce a LECZ from some DEM and Coastline data for a country or other 

area of interest. License restrictions on some of the data utilized in this work prevent their redistribution, therefore the 

sample code utilizes sample data from the open MERIT product and coastline and area of interest data files from 1215 

GPW, which is also open. 
 

The sample code is provided as a Python Notebook which utilizes the ESRI arcpy module. Although the ESRI arcpy 

module is proprietary, analogous tools exist in open source python modules and in R so that this example can help 

guide users who do not have access to arcpy. Sample input and output data are also included. To run the code to 1220 

produce new outputs users should update data paths or delete the sample outputs provided. 
 

7. DISCUSSION & CONCLUSIONS 

The analysis in this paper updates and confirms, but also refines and extends, the findings from the McGranahan et 

al., 2007 study: In 2015, based on elevation data from MERIT and population data from GHS-POP, over 10% of the 1225 

world’s population – more than 815 million people – lived within 10 meters above sea level, and based on GHS-

SMOD, 84% of those people lived in urban centers or quasi-urban clusters. Close to 10 percent (9.4) of the world’s 

land area in the ≤10m LECZ is urban or quasi-urban, compared to 1.5% globally.   
 

The sensitivity analysis, which incorporates four sources each for elevation, population, and urban proxy, reveals a 1230 

much wider range of possible estimates than previously noted. Despite the variation in estimates, there is nonetheless 

consistency among several key findings. There is high agreement in the estimates of the global population in the ≤10m 

LECZ, regardless of population or elevation data set choice: the four different population data sets place between 10.2 

and 11.1 percent of global population in the LECZ as measured by three of the four elevation data sources. Notable 

here is that two of the elevation sources – SRTM and MERIT – are based on the same underlying inputs (i.e., STRM) 1235 

whereas TanDEM-X uses a different instrument to detect elevation. (CoastalDEM places between 13.1-14.5 percent 

of the global population in the ≤10m LECZ making it a notable exception; and while CoastalDEM also uses SRTM 

as its base, it also uses many ancillary data sets and different modeling assumptions, which explain the difference.)  
 

Furthermore, and importantly, the population of the LECZ is disproportionately more urban and less rural than the 1240 

global population is, on average, by a substantial degree (about 1.25-1.75 times), regardless of which data sets one 

uses. This does not mean that in any given location or for any particular strata (i.e., in the urban continuum), data set 

choices do not matter, but the overwhelming pattern of a more urban LECZ is clear. Among the urban proxy data sets, 

there is substantial agreement in classes at the ends of the continuum – that is, locations that are classified as urban or 

rural – as distributed in and outside of the LECZ, but locations that are classified as quasi-urban seem to be found in 1245 

roughly equal proportions in and outside of the LECZ. This may be explained in part by how urban areas are detected 

– urban centers have a large share of built-up area, with little unplanned vegetation, and are comparably dense (both 

in terms of structures and population), and the rural areas are largely vegetated or not built-up areas with sparse 
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settlement – so if underlying detection is an issue, it is most likely to be manifest in the quasi-urban class where there 

is a mixture of built and unbuilt areas. Within the LECZ, most urban, and even quasi-urban area, and population, is 1250 

found within the 5-10m zone, across the different population and urban proxy data sets. Consistent with this 

observation, population densities in the 5-10m LECZ are higher than those in the ≤5m LECZ or outside of the LECZ 

regardless of which population (or urban proxy) data source is used. Finally, from 1990-2015, we find unambiguous 

evidence that urban population has grown more in the LECZ than outside of it.  
 1255 

The sensitivity analysis also reveals where input data choices result in very different estimates of population in the 

LECZ. Differences within the LECZ are most prominent when subdividing the zone into finer bands. The elevation 

data sets allocate different land areas and population totals in the zones, and result in different population estimates. 

Notably, CoastalDEM puts about 40% more land area and double the population in the ≤5m zone, despite still having 

less population and less or equal land in the 5-10m zone than the other elevation sources; it also estimates around 25% 1260 

more land area overall in the ≤10m LECZ than the other DEMs. MERIT places about 20% more land area in the 5-

10m zone than the other data sets, but estimates roughly the same population as TanDEM-X. The different population 

data sets produce estimates within the ≤10m LECZ that are generally consistent within any given population data set 

choice: there is about a 1 percentage point difference - or approximate 73 million persons - so by no means trivial, but 

much less than the differences in population estimates across the elevation data sets, or whether one subdivides the 1265 

LECZ into finer bands. CoastalDEM stands as an outlier overall, but even choices between the other elevation data 

sets result in differences of 2% of the global population, which is large. In this regard, population estimates in the 

LECZ are more sensitive to the choice of elevation data than to the choice of population data.  
 

Similarly, the urban proxy data sets result not only in different depictions of urban and quasi-urban land areas, but 1270 

also population estimates by urban-rural class (which vary substantially within each urban proxy data set). Importantly, 

while these differences persist in and out of the LECZ, due to its urban nature the differences are more substantial 

outside of the LECZ. The lights-based estimates include much more land area in urban or quasi-urban than the built-

up area based measures. This could be in part because of the physical nature of night-time lights, which have been 

shown to bloom (scatter) resulting in larger apparent footprints (Small et al., 2005). The range of population estimates 1275 

by population source can vary dramatically even within one proxy: by as much as 48% in the rural category and 23% 

in the urban category depending on which population source is used. Therefore, this sensitivity analysis indicates that 

the choice of population data set has large impacts on the total estimates for a given settlement class within any given 

urban proxy. Importantly, regardless of the urban-proxy or population data sets used as the basis for estimation, from 

1990-2015, we find unambiguous evidence that urban areas have grown more in the LECZ than outside of it.   1280 

 

Population density measures are often used to proxy aspects of urbanization in studies of climate adaptation (Solecki 

et al., 2015; Creutzig et al., 2015) and thus in this analysis we felt it important to examine the range of both population 

and built-up densities along the urban continuum in the LECZ. Despite the strong agreement that population density 

is highest in the 5-10m zone of the LECZ and that rural areas have relatively low built-up and population densities, 1285 

population and built-up densities estimates vary substantially by data set choice. Population density estimates vary 

considerably depending on the population and urban proxy data  used: Globally, GHS-SMOD produces the highest 

population densities in all urban classes and closely followed by GHS-BUILT, but these are generally 2-3 times greater 

than those estimated by dLIGHT. The lights-based measures produce much lower estimates of built-up and population 

density  in the urban class, in large part because this is where they also include the most land area (in the urban and 1290 

quasi-urban classes). Within population data sources, even for a given urban proxy data set, the average population of 

urban centers varies by close to 2,000 persons/km2. These differences across population data sets are substantially 

smaller within the LECZ, but how one defines the urban continuum still matters.   
 

While population density varies by population and urban proxy data choices, we had only one measure to evaluate 1295 

built-up densities. Within the LECZ, the GHS-BUILT proxy produces similar estimates of average built-up density in 

the ≤5m and 5-10m, as well as outside of the LECZ. This is in contrast to estimating higher population densities in 

the 5-10m zone, where in urban areas, densities range from 3,514 to 6,355 persons/km2  (see Appendix Fig. 

B4),  regardless of which population source data is used. The levels of built-up densities vary by the choice of urban 

proxy data set, but when deconstructed by LECZ zone, it is apparent that the ≤5m zone is less built than average across 1300 

all input data sets. Given that both population and built-density differ by urban proxy data sets, even within the LECZ, 

we caution users to consider carefully what a given measure means to their analysis.  
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It is clear that variations in the estimates in the LECZ can be explained through examining input data choices, but that 

is not the only factor which might lead to variations. The methodologies used to summarize those at risk are also 1305 

important. In our use of the elevation and urban proxy data sets, we made choices that are reflected in the results. 

Other users of these input data would be free to make different choices and that would result, likely, in different 

estimates. For example, the delineation of LECZs in our work is dependent on contiguity to coastlines (connectivity), 

which eliminates spurious low lying inland areas from being misclassified as part of an LECZ. We have found that 

the conditioning of input DEM data has an impact on this delineation. Specifically, the reason why the use of 1310 

CoastalDEM results in a more expansive LECZ is precisely because the CoastalDEM model is a smooth surface which 

is highly connected to coastlines. We did not apply any smoothing to TanDEM-X, and the raw data was more 

heterogeneous such that grid cells that were both less than 5m and within short distances of coastline, were often 

surrounded by barriers greater than 5m elevation. Therefore, in our construction of the LECZ, those areas are not 

considered as contiguous to the coast in the ≤5m zone. The same is true of the ≤10m LECZ, and results in lower 1315 

estimates of population and land area based on TanDEM-X, even though it is known that TanDEM-X has the lowest 

RMSE globally of those DEMs we evaluated. Local studies of connectivity – both in urban settings or waterways 

(such as deltaic areas) – are important areas for future research to improve estimation below 10m. While the coastal 

contiguity rule is ideal for application to high-resolution data in an urban setting, it should be revisited in future work 

along with local studies to validate the existence of barriers to coastal contiguity and inform our understanding of how 1320 

they impede or amplify flood risk. 
 

Similarly, with regard to the urban proxy data, the decisions we made to reduce GHS-SMOD into its level 1 

classification (urban, quasi-urban, rural), and the subsequent thresholds we applied to GHS-BUILT and dLIGHT to 

produce those same categories could be changed or refined with other modeling rules, which would in turn alter the 1325 

estimates. The settlement classes we adopted are not discrete and homogeneous as one might wish to assume, but 

rather encompass a range of settlement types along a spectrum. Defining urban, quasi-urban and rural requires 

researchers to make decisions that reflect the best available knowledge and expert judgements, but which are at some 

level necessarily arbitrary, or may not be the most suitable definitions for certain research questions.  Given that the 

share of the urban population in the LECZ has grown much more so than outside the LECZ, it remains imperative that 1330 

urban research continues to reflect on the conceptualization and measurement  of this dynamic process. 
 

Recent work has been paying greater attention to the socio-demographic issues, such as migration (McMichael et al., 

2020; McLeman, 2018; Hauer et al., 2020), adaptation in (Reimann et al., 2018; Hinkel et al., 2014),  and managed 

retreat and planned relocation from (Solecki and Friedman, 2021; Dannenberg et al., 2019; Geisler and Currens, 1335 

2017) the LECZ. These are welcome additions to understanding populations at risk. New work has also examined 

aspects of the geography of LECZ, such as flooding in deltaic areas (Edmonds et al., 2020; Minderhoud et al., 2019) 

and modelling tidal heights (Muis et al., 2020; Taherkhani et al., 2020; Du et al., 2018; Pickering et al., 2017) and 

multiple stressors (Anderson et al., 2018; De Dominicis et al., 2020; Moftakhari et al., 2017) so relevant to 

improving estimates of coastal exposure itself. Along with improvements to understanding DEMs in urban areas 1340 

(Pesaresi et al., 2021), these represent promising new avenues towards fuller understanding of seward hazards to 

town and city dwellers.  

In a data-rich age, we must be careful to reveal our assumptions, to understand uncertainties, and to highlight those 

things which are not yet well enough known. Headlines tend to highlight boldly stated findings, such as recent 

claims that the number of people at risk of catastrophic flooding is far greater than previously understood (Kulp and 1345 

Strauss, 2019; Herscher, n.d.). Although such claims may turn out to be true, when it comes to coming up with 

estimates supporting or denying such claims, the devil is in the detail, and it is important  to avoid an exaggerated 

impression of scientific debate or a rapidly fluctuating scientific consensus. This work demonstrates the impact of 

data choices on estimates of population and land area in the LECZ and unambiguously finds that those choices can 

lead to drastically different understandings of where people live and under what conditions.  Improvements are 1350 

continuous, and often incremental, and while there is considerable agreement on the broader patterns and trends, 

there is a lot of variation that reflects real uncertainties, and high levels of uncertainty will not be disappearing any 

time soon. The clearer we can be in articulating those areas of uncertainty, the more effective future research and 

policy can be. 
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8. APPENDICES 1355 

Appendix A 

A1 Comparing Population Estimates by Urban Class and Population Data Sets: A closer look 

There are large differences in population estimates between population sources in different measurements regardless 

of which elevation data set is used for the LECZ or which urban proxy data set is used to indicate the classes along 

the urban continuum.  Even though the estimates between population data sources vary when classified by these data 1360 

strata, there is also a clear pattern: estimates from GPW and GHS-POP are found on the opposite ends with estimates 

based in WorldPop and LandScan in between. One key explanation for the variation across population data sources is 

driven by the input resolution of the administrative units of the underlying census data that are made available (by 

national statistical offices) . Another explanation is the modeling choices (both types and number of ancillary data). 

Figures B6 to B10 help to explain these differences. Figures B6, B7 and B8 focus on understanding the differences in 1365 

terms of the underlying resolution GPW input units, comparing GHS-POP, WorldPop and LandScan  population 

estimates to GPW  along the urban continuum by different urban proxy data sets (GHS-SMOD, GHS-BUILT, 

DLIGHT) and LECZ (using Merit DEM only). In Figures B9, B10 and Table C1, we look at differences in population 

estimates between population sources from a modeling perspective: in these figures, we show an independent 

“settlement extent” data set as a validation data (available only for some African countries) to compare population 1370 

data sets used here for Kenya, Mozambique and Nigeria. We select these countries because the population data use 

different administrative resolutions. The validation settlement extent data set is from the GRID3 project and vector 

(polygon) data are derived from building footprints (Center For International Earth Science Information Network and 

Novel-T, 2020). First, buildings are extracted from high resolution imagery, then the building footprints are aggregated 

into polygons. Imagery that was used for feature extraction were mostly captured between 2017 and 2020. The 1375 

settlement extent data set has three subclasses: built-up areas (BUA), small settlement areas (SSA) and hamlets. 

Building count is used for the classification. Settlements that have more than 3,000 buildings (in the aggregated 

polygon) are classified as BUA and they generally  correspond to cities and large towns. Settlements that have 

buildings count between 50-3000 are classified as SSA,  and generally  correspond to small towns or villages. Hamlets 

correspond to  individual farm houses or small villages. 1380 

 

In Figures B6, B7 and B8, the three left panels show population by urban continuum globally whereas the three right 

panels show the same estimates in the LECZ only.  GPW is used as a baseline because it is the population input data 

for both GHS-POP and WorldPop. (As a reminder, GPW uses 2010 round census data.) The country-specific 

administrative unit levels for LandScan are not indicated in the metadata, but LandScan is still included here for 1385 

comparison. Administrative level zero is country-level data and level one is first-order administrative units such as 

states or provinces. Levels four and higher are finely resolved, often representing enumeration areas or the finest 

geographic unit available in a census (such as blocks in the US). We plot the proportion of the population that falls 

into each  urban continuum class comparing GPW to the other three population data sources. Each dot represents one 

country. Colors represent the administrative level that was used in the production of GPW.  1390 

 

Color-coded fit lines indicate administrative-level inputs and show homogeneity between countries that have the same 

level inputs. Fit-lines with higher R2 statistics indicate that countries with the same administrative-level resolution are 

similar between population sources in terms of their differences across the urban continuum in their population 

estimates. The position of the fit lines relative to the diagonal line indicates the amount of difference in population 1395 

shares between GPW and the other population data sets  across the urban continuum. If a fit line is in the same 

orientation, and close to the diagonal line, it indicates that there is high agreement between the population data set on 

the x-axis and GPW in terms of the population share in each respective  urban class in the  countries that have the 

same administrative-level resolution.  
 1400 

In the scatterplots (B6, B7 and B8) we examine not only the input resolution of the population data sets,   but also 

differences in the choice of urban proxy data sets as well as the modelling choices of population data sets (in Figures 

B9, B10, and Table C1). GHS-SMOD, GHS-BUILT and dLIGHT data sets, used for the classification of urban 

continuum, are shown Figures B6, B7 and B8 respectively.  As shown in the figures, the way we classify the urban 

continuum affects the population estimate differences across the urban continuum, but it does not explain the whole 1405 

story. We see the same pattern in terms of population estimates between population sources across all urban proxy 
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data sets. Fit lines are closer to the diagonal lines as we move from GHS-BUILT-based classes to a dLIGHT-based 

classification. This is mostly due to the differences in area estimates: dLIGHT is more inclusive meaning that  it adds 

more land area in urban centers and quasi urban classes (Table 6), and when the land area increases the agreement 

between GPW estimates also increases because of GPW’s uniform distribution of population. GHS-BUILT is more 1410 

exclusive in that urban centers and quasi-urban areas have the smallest area (of the urban proxy data sets) because we 

did not apply a contiguity rule when classifying the urban continuum. We simply applied basic cut points in built-up 

density (1%, 3% and 50%). This causes some single cells to be either quasi-urban or urban centers.  This is much 

more evident in quasi-urban areas because there are many single cells with built-up density between 3% and 50% in 

the GHS-BUILT layer. Grid cells with built-up density of 50% or more are most likely part of  a large urban 1415 

agglomeration area.  Therefore, in GHS-BUILT based classes, the difference in population estimates follows 

a  somewhat different pattern especially in quasi-urban areas. Does the urban proxy data set affect the population 

difference across the urban continuum? Yes, but the respective differences between population sources and GPW 

remains the same; WorldPop and GHS-POP are located at opposite ends of the spectrum, and LandScan is in between. 

Also, the differences by the resolution of the administrative level remain the same. Countries with higher 1420 

administrative resolution have smaller population differences across the urban continuum regardless of the urban 

proxy and population data sets. Therefore, urban proxy data sets affect the population differences across the urban 

continuum due to the extent or area of the urban classes.  
 

Next we look at input administrative unit resolutions. As shown in the scatterplots, input administrative resolution is 1425 

important: it explains much of the differences in the estimation of population between population sources. Regardless 

of the population sources and urban proxy data set, the population difference across the urban continuum is smaller in 

the countries with higher administrative resolution (i.e., those at level  4  and higher). These countries also have very 

high R2 generally. High R2 in this case means  that these countries are alike in terms of the population differences 

across the urban continuum. Even though countries with lower administrative resolution also have higher population 1430 

differences (i.e., levels 1 or 2), in most of the combinations of different data sets shown in Figures B6, B7 and B8, 

countries with level two have larger population differences than level one because countries with level one are mostly 

geographically small, such as small island countries or city-states. Another interesting pattern related to the 

administrative resolution is that regardless of the respective level, fit lines are much closer to the diagonal lines in 

urban areas than in quasi-urban areas. This is because regardless of the country-specific administrative resolution, the 1435 

delineation of urban areas, in general, is at finer resolutions. We see the same pattern in the ≤10m LECZ. Regardless 

of administrative resolution, all of the fit lines are slightly closer to the diagonal lines in the LECZ (right panels in the 

scatterplots), because generally speaking, the ≤10m LECZ is more urbanized than inland areas and therefore, has finer 

administrative delineations regardless of the overall country specific  administrative  resolution.  
 1440 

To demonstrate, using Mozambique as an example to make that point clear, the maps in Fig. B9 and Fig. B10 illustrate 

how these factors (input resolution, urban areas and population models) come together inside vs outside of the LECZ. 

(These figures also show the reference data set, settlement extents from GRID3 building-footprint data.) GPW uses 

third-level administrative population data for Mozambique, which means these data are also the baseline population 

units from which modelling occurs in GHS-POP and Worldpop. As shown on the map B9, there is a large urban 1445 

agglomeration around the capital city of Maputo, which itself has variable resolution, including many smaller units 

(where population is concentrated), and a relatively large portion of it is in the LECZ. However, in general, in 

Mozambique, inland areas (outside the LECZ) as well as those with low population, as shown in Fig. B10, the 

administrative resolution is very coarse.  
 1450 

Lastly, we look at the population differences across the urban continuum in terms of  downscaling methods that were 

used between  population sources. Even though the way we classify the urban continuum has an effect on the 

population differences, as shown in the scatterplots and map series, modeling is the main factor that causes the 

population differences across the urban continuum along with administrative resolution. Even though we do not know 

what level of administrative units were used in LandScan, based on WorldPop and GHS-POP,  we can say that there 1455 

is an inverse relationship between the level of input administrative resolution and uncertainty  in the  applied 

downscaling methods.  GPW is spatially imprecise in terms of estimating population because it takes the units as given 

and uniformly allocates population within a given spatial unit. Imprecision is greater in spatially coarse units in general 

and those where the population is inherently unevenly distributed (e.g., large desert or rural regions where population 

may be concentrated but the administrative unit is much larger than that concentrated area). 1460 
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GHS-POP allocates the population within administrative units using very clear rules based on built-up presence and 

built-up density, whereas the other two population data sets use more complex models, which at the subnational level 

may be less transparent inherently. Due to the input built-up layer that is used in the GHS-POP model, it allocates 

population heavily in dense built-up areas, and tends to underestimate population in areas of lower built-up density 1465 

(such as rural locations). This is more important where the satellite data used to detect built-up are weak, such as in 

cloud-prone areas in the tropics. This overallocation is greatest if the administrative units are relatively coarse. In 

WorldPop and LandScan, which use additional ancillary spatial features and modelling parameters, they are able to 

overcome some of the overallocation issues of GHS-POP. Nevertheless, WorldPop and LandScan produce different 

spatial distributions of population. In general, we find that WorldPop tends to overestimate rural population and 1470 

LandScan tends to overestimate urban population. The degree of misestimation is unknowable at a global scale 

because there is no objective baseline on which to compare them all; but some studies have compared these data sets 

in particular locations.  

In order to clarify the role of differences in the allocating methods between population data sources shown in  the Fig. 

B9 and Fig. B10, we see that GPW distributes population evenly in each admin unit but other population 1475 

sources  allocate population to settled areas. The GHS-POP layer has higher agreement with BUA class in the GRID3 

settlement extent layer, but it has a value of zero (that is, estimated to be unpopulated) in SSAs and hamlets. WorldPop 

also captures large settlements, but it gradually lowers the population as it gets far from dense settled areas. Unlike 

GHS-POP, all cells are populated, but as shown in the settlement extent layer, most of these areas do not have any 

settlements. Therefore, WorldPop over estimates rural population and this is why WorldPop estimates are much closer 1480 

to GPW population estimates in the scatterplots. LandScan falls somewhere between GHS-POP and WorldPop in 

terms of disaggregating population between dense (urban) and lower density (rural) settled areas. Like WorldPop, the 

majority of the cells are populated, but the population of unsettled areas is lower in LandScan than WorldPop, and 

LandScan does not allocate as much population to medium and large settlements as does GHS-POP. 

Finally, in Table C1 we compared Kenya, Mozambique and Nigeria  in order to quantify the effect of input resolution 1485 

on uncertainty in the downscaling processes. We overlay population layers with settlement extent and summarize 

population by GRID3 settlement extent subclasses.  In Kenya, where high resolution administrative level 5 data is 

available, the population shares between settlement extent classes are very close to each other; including population 

of unsettled areas across population sources as compared to Mozambique and Nigeria, which rely on coarser 

administrative unit inputs as their base. It is important to note here that GHS-POP also adds population to unsettled 1490 

areas and as administrative resolution increases, population in unsettled areas also increases. This is due to a rule that 

is applied in GHS-POP; it disaggregates population evenly when there is no built-up captured in an administrative 

unit. In this table, we do not account for the average geographic size of the units, and even though in general, 

administrative level corresponds to average size, there is variation in this pattern. So for example, the agreement 

among population data sources in level 2 Nigeria is higher than in level 3 Mozambique for places classified as unsettled 1495 

by GRID3 – this is because on average, the geographic size of the administrative units in Nigeria is indeed smaller in 

terms of area than in Mozambique.  
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Figure B1. Region Group Concept from https://data-flair.training/blogs/image-segmentation-machine-learning/  

 
Figure B2. Raw TanDEM-X captures roadways, whereas CoastalDEM seems to capture agricultural land uses. 
 1505 
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Figure B3. Proportion of the global population in each urban class (urban, quasi-urban and rural) in the ≤5m and 5-10m 

LECZ, by each respective urban-rural class, according to different Population and Urban Proxy  data sets, 2015. (MERIT 

DEM is used for LECZ delineation.) 
 1510 

https://doi.org/10.5194/essd-2021-165

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 7 June 2021
c© Author(s) 2021. CC BY 4.0 License.



47 

 

 
Figure B4.  Population density of urban, quasi-urban and rural by urban-rural classes, by LECZ using MERIT DEM. 
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Figure B5.  Built-up  density (%) of urban, quasi-urban and rural by urban-rural classes, by urban proxy and election data 

sets in and outside of the LECZ. 
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  1525 

 

Figure B6. Comparison of Population Data Sources by level of input unit in GPW,  by Urban-Rural Classes and Urban 

proxy data sets (GHS-SMOD). Left panel shows all land areas, the right panel shows area only in the ≤10m LECZ. 
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 1530 
 

Figure B7. Comparison of Population Data Sources by level of input unit in GPW,  by Urban-Rural Classes and Urban 

proxy data sets (GHS-BUILT). Left panel shows all land areas, the right panel shows only under 10 meters (LECZ).  
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 1535 

Figure B8. Comparison of Population Data Sources by level of input unit in GPW, by Urban-Rural Classes and Urban 

Proxy data sets (DLIGHT). Left panel shows all land areas, the right panel shows only under 10 meters (LECZ).  
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 1540 

Figure B9. Comparison of population distributions by population data sources shown with administrative boundaries and 

GRID3 building-footprint derived settlement extent data, Maputo and surrounding region. 
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Figure B10. Comparison of population distributions by population data sources shown with administrative boundaries 

and GRID3 building-footprint derived settlement extent data, Nametil-Sede and surrounding region. 1545 
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Figure B11. Estimates of Population in different LECZ zones, by elevation and population data sources, 1990. 

 

Figure B12. Percent of total population, by urban-rural classes, using different urban proxy and population data sources, 

globally and in the ≤10m LECZ (using MERIT DEM), 1990.  1550 
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Appendix C - Tables 

 

Table C1. Comparison of Population Data Sources by level of input unit in GPW, by Urban-Rural Classes and Urban proxy data 

sets, in the LECZ. 

Country Admin 

level 
Digital-Globe based 

Settlement Type 

WorldPop (%) GHS-POP (%) LandScan (%) GPW (%) 

Total ≤10 

Meters Total ≤10 

Meters Total ≤10 

Meters Total ≤10 

Meters 

Kenya 5 

BUA 65 44 69 40 65 58 60 42 

SSA 12 12 13 28 14 17 12 9 

Hamlets 10 16 7 16 10 13 11 17 

No settlement 13 28 11 16 11 12 17 32 

Mozambique 3 

BUA 26 36 59 53 29 45 15 23 

SSA 12 9 19 14 15 9 10 9 

Hamlets 28 13 9 10 25 13 31 15 

No settlement 34 43 13 24 31 33 44 53 

Nigeria 2 

BUA 37 41 69 52 57 70 23 32 

SSA 17 10 22 24 27 20 15 7 

Hamlets 17 7 4 5 9 3 21 7 

No settlement 29 42 5 19 7 7 41 41 

BUA (Built-up areas): Building count above 3000 

SSA (Small settlement areas) : Building count between 50 to 3000 

Hamlets : Building count less than 30 

Admin level: Admin resolution used in GPW 
Citation: Center for International Earth Science Information Network (CIESIN), Columbia University and Novel-T. 2020. 

(GRID3). Source of building footprints “Digitize Africa data © 2020 Maxar Technologies, Ecopia.AI". 

https://doi.org/10.7916/d8-37sa-gy34. 
GRID3 Mozambique Settlement Extents Version 02, Alpha. Palisades, NY: Geo-Referenced Infrastructure and Demographic 

Data for Development 
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13. DISCLAIMER 

An early version of this paper was presented at the 2019 American Geophysical Union Fall Meeting.  1565 

 

Views expressed in this article are not necessarily those of NASA SEDAC, CIESIN, or Columbia University. 
 

This product was made in part utilizing the LandScan 2015 and LandScan 2000 High Resolution global Population 

Data Set copyrighted by UT-Battelle, LLC, operator of Oak Ridge National Laboratory under Contract No. DE-AC05-1570 

00OR22725 with the United States Department of Energy. The United States Government has certain rights in this 

Data Set. Neither UT-BATTELLE, LLC NOR THE UNITED STATES DEPARTMENT OF ENERGY, NOR ANY 

OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL 

LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF THE 

DATA SET. 1575 

This is a preliminary open data release, pending peer review of the data and associated journal articles. Following the 

peer review process, data curation will be completed by the NASA Socioeconomic Data and Applications Center 

(SEDAC) and the data will be disseminated through the SEDAC catalog. 
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